Intro to R Programming

What is R

- Programming Language for Statistical Computing
- Widely used among statisticians and data miners for developing statistical software and data analysis
- Can perform a variety of Visual and Modeling Functions useful for conceptualizing data analysis***

R vs Excel

- R utilizes a lot of datasets that are imported from excel
- R can handle much larger data sets
- R is used for more advanced statistical analysis and data visualization
- Libraries in R

R vs Python

- Python heavily used in software engineering and Web Design while R is more specific to statistical modeling and data analysis
- R has a more comprehensive data modeling and visualization base
- Both can perform similar functions

Examples of Data Analysis with R

Layout of R

Command Console

$\langle \varphi \varphi \rangle$	🔊 📄 🖸 Source on Save 🔍 者 🗉 📼 🚽 💼 📼			
55				
56	##**** Different uses of function diag() ****##			
57	diag(3) ## 3x3 Identity matrix			
58	diag(c(3, -1, 5)) ## 3x3 Square matrix with this diagonal			
59				
60	A			
61	diag(A) ## Diagonal of a matrix			
62	<pre>sum(diag(A)) ## Calculate the trace of A</pre>			
63				
64	##**** Element by Element Product of Matrices ****##			
65	$(A \leftarrow matrix(1:4, nrow = 2))$			
66	$(B \leftarrow matrix(2:5, nrow = 2))$			
67				
68	A * B ## Element by element product			
69	(U <- matrix(1:6, nrow = 2))			
70	A ~ D ## Matrices need to have same number of rows			
32:32	(Top Level) R Script			
Grand				
Lonsol	~/ ~/ ~/ ~~			
> sart()) ## Square root of EACH element of a			
[1] 1.0	F17 1.000000 1.414214 1.732051 2.000000 2.236068			
> sum(a)	> sum(a) ## Sum of ALL elements of a			
[1] 15				
> a / sum(a) * 100				
[1] 6.666667 13.333333 20.000000 26.666667 33.333333				
> seq(from = 1, to = 9.75, by = 0.5)				
[1] 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5				
> print("hello world")				
[1] "he	[1] "hello world"			
> print	> print("Hi my name is Ajith")			
L1] "Hi	my name is Ajith"			
>				

How to seek help in R

Printing Text

- 1 print("hello world")
- 2 print("Hi my name is Ajith")
- > print("hello world")
 [1] "hello world"
 > print("Hi my name is Ajith")
 [1] "Hi my name is Ajith"

Answer

1 print("Hello my name is Ajith and I was born in Singapore")

> print("Hello my name is Ajith and I was born in Singapore")
[1] "Hello my name is Ajith and I was born in Singapore"

1 "Hello my name is Ajith and I was born in Singapore"

> "Hello my name is Ajith and I was born in Singapore"
[1] "Hello my name is Ajith and I was born in Singapore"

Calculations

1	1 + 1
2	4-3
3	3*3
4	9/3

> 1	+	1	
[1]	2		
> 4-	-3		
[1]	1		
> 3*	•3		
[1]	9		
> 9/	′3		
[1]	3		

Math Operators

Operator	Description
+	addition
-	subtraction
*	multiplication
/	division
^ or **	exponentiation
x %% y	modulus (x mod y) 5%%2 is 1
x %/% y	integer division 5%/%2 is 2

Data Types

- Logical True/False
- Integer 4, 6, 2
- Numeric 3.4, 566, 2.34
- Character "a", "hello"

Assigning Variables in R

• Assign variables to any data type in R for efficiency and data manipulation (take into account data type when doing so)

1	a <- 1	> a <- 1
2	b <- 2	> b <- 2
4	r <- "Hello"	<pr "hello"<="" <-="" pre=""></pr>
5	t <- "World"	<pre>> t <- "World"</pre>

Combining Assigned Variables

Make sure to take into account data type when doing this***

1 a <- 1
2 b <- 2
3 a+b
4 r <- "Hello"
5 t <- "World"
6 paste(r,t, sep = " ")</pre>

> a <- 1
> b <- 2
> a+b
[1] 3
> r <- "Hello"
> t <- "World"
> paste(r,t, sep = " ")
[1] "Hello World"

Objects in R

- Vectors
- Arrays
- Matrices
- Lists
- Dataframes

Vectors

- A vector is a single entity consisting of an ordered collection of elements of the *same* type
- To define a vector use the function c() (concatenate)

```
9 (a <- c(3, 1, 8.5, -1))
10 str(a)
11
12 (a <- c("Hello", "world"))
13 str(a)
14
15 (a <- c(TRUE, FALSE, FALSE, T, F))
16 str(a)</pre>
```

```
> str(a)
num [1:4] 3 1 8.5 -1
>
> (a <- c("Hello", "world"))
[1] "Hello" "world"
> str(a)
chr [1:2] "Hello" "world"
>
> (a <- c(TRUE, FALSE, FALSE, T, F))
[1] TRUE FALSE FALSE TRUE FALSE
> str(a)
logi [1:5] TRUE FALSE FALSE TRUE FALSE
```


• You can include inputs to a vector of different data type however the resulting vector will make them all the same type

18	str(c(1,	"Hello",	4,	TRUE))
19						

> str(c(1, "Hello", 4, TRUE))
chr [1:4] "1" "Hello" "4" "TRUE"

Vectors (3)

• You can transform the vector to any data type as well

- 22 a <- as.numeric(a)</pre>
- 23 str(a)
- 24 a <- as.character(a)</pre>
- 25 str(a)

> a <- as.numeric(a)
> str(a)
num [1:4] 3 1 8 -1
> a <- as.character(a)
> str(a)
chr [1:4] "3" "1" "8" "-1"

Vectors (4)

• Creating sequences of numbers

9 x <- 1:7 13 x <- seq(1, 3, by=0.2) 10 x 14 x

> x [1] 1 2 3 4 5 6 7 > x [1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0

Vectors

• You can access specific elements of a vector

16	X
17	x[8]
18	x[c(3,5)]

> X		
[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0		
> x[8]		
[1] 2.4		
> x[c(3,5)]		
[1] 1.4 1.8		

Modifying Vectors

• You can change, add, or delete parts to a vector

13	x <- seq(1, 3, by=0.2)
14	x
15	x[8] <- 34
16	x
17	x[12] <- 3.2
18	x
19	x <- x[c(-8, -12)]
20	x

```
> x <- seq(1, 3, by=0.2)
> x
[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
> x[8] <- 34
> x
[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 34.0 2.6 2.8 3.0
> x[12] <- 3.2
> x
[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 34.0 2.6 2.8 3.0 3.2
> x <- x[c(-8, -12)]
> x
[1] 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.6 2.8 3.0
```

Vector Arithmetic

27	a <- c(1, 2, 3, 4, 5)
28	a + 1
29	a^2
30	<pre>sqrt(a)</pre>
31	sum(a)

> a <- c(1, 2, 3, 4, 5)
> a + 1
[1] 2 3 4 5 6
> a^2
[1] 1 4 9 16 25
> sqrt(a)
[1] 1.000000 1.414214 1.732051 2.000000 2.236068
> sum(a)
[1] 15

Example of Vector Use

25	am %>%
26	arrange(-track_popularity) %>%
27	<pre>select(track_name, track_popularity) %>%</pre>
28	head(5) %>%
29	kable()

ltrack_name	I	<pre>track_popularity</pre>
l:	- -	:
IDo I Wanna Know?	T	82
IR U Mine?	T	77
<pre>Why'd You Only Call Me When You're High?</pre>	T	76
Fluorescent Adolescent	Т	75
IArabella	I	73

Arrays

 Arrays are the R data objects which can store data in two or more dimensions

```
35 my_array <- array(1:24, dim=c(4,6))
```

36 my_array

```
37
```

```
38 my_array <- array(c(1, 4, 8, 10), dim=c(2,2))</pre>
```

39 my_array

```
> my_array <- array(1:24, dim=c(4,6))</pre>
> my_array
    [,1] [,2] [,3] [,4] [,5] [,6]
[1,]
                9
                   13
    1
           5
                        17
                            21
[2,] 2 6 10 14 18
                           22
[3,] 3 7 11 15 19 23
[4,] 4 8 12 16
                        20 24
>
> my_array <- array(c(1, 4, 8, 10), dim=c(2,2))</pre>
> my_array
    [,1] [,2]
[1,]
          8
       1
[2,]
          10
       4
```

Arrays (2)

• You can combine individual vectors to create an array of the elements

```
> vector1 <- c(5,9,3)
> vector2 <- c(10,11,12,13,14,15)
> vector1
[1] 5 9 3
> vector2
[1] 10 11 12 13 14 15
> result <- array(c(vector1,vector2),dim = c(3,3))
> print(result)
      [,1] [,2] [,3]
[1,] 5 10 13
[2,] 9 11 14
[3,] 3 12 15
```

Arrays (3)

• You can always change the dimensions of an existing array

$m_{v} array <- array(1:24, dim=c(4,6))$			[,1]	[,2]	[,3]	[,4]	[,5]	[,6]
		[1,]	1	5	9	13	17	21
my_array		[2,]	2	6	10	14	18	22
$dim(my_array) <- c(6,4)$		[3,]	3	7	11	15	19	23
my_array		[4,]	4	8	12	16	20	24
)		> dim	n(my_c	array)) <- (:(6,4))	
		> my_	array	/				
			[,1]	[,2]	[,3]	[,4]		
		[1,]	1	7	13	19		
		[2,]	2	8	14	20		
		[3,]	3	9	15	21		
		[4,]	4	10	16	22		
		[5,]	5	11	17	23		
	<pre>my_array <- array(1:24, dim=c(4,6)) my_array dim(my_array) <- c(6,4) my_array</pre>	<pre>my_array <- array(1:24, dim=c(4,6)) my_array dim(my_array) <- c(6,4) my_array</pre>	<pre>my_array <- array(1:24, dim=c(4,6)) my_array dim(my_array) <- c(6,4) [1,] [2,] [3,] [4,] > dim > my_array [1,] [2,] [3,] [4,] [5,]</pre>	<pre>my_array <- array(1:24, dim=c(4,6)) my_array dim(my_array) <- c(6,4) my_array [1,] [1,] 1 [2,] 2 [3,] 3 [4,] 4 > dim(my_array [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 [5,] 5</pre>	my_array <- array(1:24, dim=c(4,6)) [,1] [,2] my_array [2,] 2 6 dim(my_array) <- c(6,4) [3,] 3 7 my_array [4,] 4 8 > dim(my_array) [,1] [,2] [1,] 1 5 [2,] 2 6 [3,] 3 7 [4,] 4 8 > dim(my_array) [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 1 7 [,1] [,2] [1,] 4 10 [,1] [,2] [,1] [1,] 5 11 [,1] [,2]	my_array <- array(1:24, dim=c(4,6)) my_array dim(my_array) <- c(6,4) my_array dim(my_array) <- c(6,4) my_array (3,] 3 7 11 [4,] 4 8 12 > dim(my_array) <- c(6,4) [1,] [,2] [,3] [1,] 1 7 13 [2,] 2 8 14 [3,] 3 9 15 [4,] 4 10 16 [5,] 5 11 17	my_array <- array(1:24, dim=c(4,6)) [,1] [,2] [,3] [,4] my_array [1,] 1 5 9 13 dim(my_array) <- c(6,4) [3,] 3 7 11 15 my_array [4,] 4 8 12 16 > dim(my_array) <- c(6,4) [1,] [,2] [,3] [,4] [1,] 1 7 13 19 [2,] 2 8 14 20 [3,] 3 9 15 21 [4,] 4 10 16 22 [5,] 5 11 17 23	my_array <- array(1:24, dim=c(4,6)) my_array dim(my_array) <- c(6,4) my_array (im(my_array) <- c(6,4)) my_array (im(my_array) <- c(6,4)) (im(my_array) <- c(6,4)) <tr< th=""></tr<>

[6,]

Example of Array Use

Matrices

• An array with two dimensions

54	<pre>matrix(1:8,</pre>	nrow =	2)
55	<pre>matrix(1:8,</pre>	ncol =	4)

> mat	trix(1	L:8, r	nrow =	= 2)		
	[,1]	[,2]	[,3]	[,4]		
[1,]	1	3	5	7		
[2,]	2	4	6	8		
> matrix(1:8, ncol = 4)						
> mat	rix(1	L:8, r	ncol =	= 4)		
> mat	rix(1 [,1]	L <mark>:8,</mark> r [,2]	n <mark>col =</mark> [,3]	= <mark>4)</mark> [,4]		
> mat	rix(1 [,1] 1	L:8, r [,2] 3	n <mark>col =</mark> [,3] 5	= <mark>4)</mark> [,4] 7		

Matrices (2)

• You can change the ordering of the matrix to order by row

1 matrix(1:8, nrow = 2, byrow = TRUE)

> matrix(1:8, nrow = 2, byrow = TRUE)
 [,1] [,2] [,3] [,4]
[1,] 1 2 3 4
[2,] 5 6 7 8

Matrices (3)

• You can select specific elements and subsets of a matrix

57	(A <- matrix(10:19,	nrow	=	Z))	
58	A[7]				

```
59 A[1, 4]
```

<pre>> (A <- matrix(10:19, nrow = 2))</pre>							
	[,1]	[,2]	[,3]	[,4]	[,5]		
[1,]	10	12	14	16	18		
[2,]	11	13	15	17	19		
> A[7	']						
[1] 1	.6						
> A[1	, 4]						
[1] 1	6						

Matrices (4)

70	$A \ll matrix(1:16, nrow = 4)$
71	A[, 2]
72	A[2,]
73	A[c(1, 3), c(2, 4)]

	[,1]	[,2]	[,3]	[,4]
[1,]	1	5	9	13
[2,]	2	6	10	14
[3,]	3	7	11	15
[4,]	4	8	12	16

```
> A <- matrix(1:16, nrow = 4)
> A[, 2]
[1] 5 6 7 8
> A[2,]
[1] 2 6 10 14
> A[c(1, 3), c(2, 4)]
     [,1] [,2]
[1,] 5 13
[2,] 7 15
```

Matrices (5)

cbind(A,B)

• You can combine two matrices together

```
(A <- matrix(1:4, nrow = 2))
(B <- matrix(2:5, nrow = 2))
rbind(A,B)</pre>
```

<pre>> rbind(A,B)</pre>							
	[,1]	[,2]					
[1,]	1	3					
[2,]	2	4					
[3,]	2	4					
[4,]	3	5					
> cbi	ind(A,	,B)					
	[,1]	[,2]	[,3]	[,4]			
[1,]	1	3	2	4			
F2.7	2	4	3	5			

Example of Matrix Use

17 t <- c(108.1, 107.6, 106, 105.1, 104.8)
18 n <- c("Nolan Ryan", "Bob Feller", "Aroldis Chapman", "Aroldis Chapman", "Joel Zumaya")
19 Matrix <- rbind(t,n)
20 Matrix</pre>

```
> t <- c(108.1, 107.6, 106, 105.1, 104.8)
> n <- c("Nolan Ryan", "Bob Feller", "Aroldis Chapman", "Aroldis Chapman", "Joel Zumaya")
> Matrix <- rbind(t,n)
> Matrix
   [,1] [,2] [,3] [,4] [,5]
t "108.1" "107.6" "106" "105.1" "104.8"
n "Nolan Ryan" "Bob Feller" "Aroldis Chapman" "Aroldis Chapman" "Joel Zumaya"
```

Lists

 A list is an object containing elements of any type, including other objects

Lists (2)

• Accessing elements of a list

```
      5
      L[1]
      > L[1]

      6
      str(L[1])
      [1] 1

      7
      L$number
      > L[1]

      8
      str(L$number)
      > L[1]

      9
      L["number"]
      > str(
```

```
$number
[1] 1 3 2
> L[1]
$number
[1] 1 3 2
> str(L[1])
List of 1
 $ number: num [1:3] 1 3 2
> L$number
[1] 1 3 2
> str(L$number)
 num [1:3] 1 3 2
> L["number"]
$number
[1] 1 3 2
```

Lists (3)

- 94 L[[1]][2]
- 95 L\$number[2]
- 96 L[[3]][[1]][2]
- 97 L\$other_list\$logical[2]
- 98 L[["other_list"]][["logical"]][2]

```
> L[[1]][2]
[1] 3
> L$number[2]
[1] 3
> L[[3]][[1]][2]
[1] FALSE
> L$other_list$logical[2]
[1] FALSE
> L[["other_list"]][["logical"]][2]
[1] FALSE
```

Example of List Use

27 L <- list(c("eggs", "apples", "milk"), c(2, 3, 2), c("cartons", "lbs", "cartons"))
28 L</pre>

```
> L <- list(c("eggs", "apples", "milk"), c(2, 3, 2), c("cartons", "lbs", "cartons"))
> L
[[1]]
[1] "eggs" "apples" "milk"
[[2]]
[1] 2 3 2
[[3]]
[1] "cartons" "lbs" "cartons"
```

Dataframes

• Similar to Matrices except they can hold all forms of data types

>	df		
	num	char	lgc
1	3	а	TRUE
2	4	b	TRUE
3	2	b	FALSE
4	-1	а	TRUE

```
> df[1]
  num
    3
1
2
  4
3
  2
4
   -1
> df[[2]]
[1] "a" "b" "b" "a"
> df[, 1]
[1] 3 4 2 -1
> df$lgc
          TRUE FALSE
     TRUE
                       TRUE
```

Dataframes (2)

53 Pitchers_Speeds <- data.frame(54 Pitchers_Name = c("Nolan Ryan","Bob Feller","Aroldis Chapman","Aroldis Chapman","Joel Zumaya"), 55 MPH = c(108.1, 107.6, 106, 105.1, 104.8), 56 stringsAsFactors = FALSE 57) 58 Pitchers_Speeds

> Pitchers_Speeds
 Pitchers_Name MPH
 1 Nolan Ryan 108.1
 2 Bob Feller 107.6
 3 Aroldis Chapman 106.0
 4 Aroldis Chapman 105.1
 5 Joel Zumaya 104.8

Example of Dataframe Use

21 ggplot(faithful, aes(x = faithful\$eruptions, y = faithful\$waiting, colour = faithful\$waiting)) +

- 22 geom_point(aes()) +
- 23 scale_colour_gradientn(name = "Time Waited", colours=rainbow(4)) +
- 24 labs(x = "Eruption duration", y = "Time waited") +
- 25 ggtitle("Plot of Old Faithful Waiting and Eruption Times")

Plot of Old Faithful Waiting and Eruption Times

Congratulations! You have passed the introduction to R