SWC Workshop June 8-9, 2023

Catherine Barber

2023-06-07

Introduction to R and RStudio
What You Will Learn
e How to find your way around RStudio
e« How to interact with R

e How to manage your environment
e How to install packages

Before Starting

e Ensure R and RStudio are installed and up-to-date.
e Ensure gapminder file is downloaded and saved somewhere you can find it easily.

Pros and Cons of Using R

Like any data analysis tools, R has pros and cons. For example, some of the benefits of R are that it is:

e Open source and free to use

o Extremely flexible and great for customized analysis and visualization

e Supported by a robust community of users

o Enhanced by thousands of packages (collections of code) that extend its capabilities.

The main challenge of R is the learning curve associated with learning a new programming language. But
Research Data Services can help with this!

Tour of RStudio
RStudio is a free, open-source Integrated Development Environment. It provides lots of neat features:

e built-in editor

e platform neutral

e integration with version control and project management

e GUI features and shortcuts that make your life easier without reducing reproducibility

Overview of panels:

o Left: interactive R console/Terminal

https://swcarpentry.github.io/r-novice-gapminder/data/gapminder_data.csv

o Upper right: Environment/History /Connections
o Lower right: “Miscellaneous” (Files/Plots/Packages/Help/Viewer)

You can also open a fourth panel for a script editor; we will do that shortly.

Look at Console first:

e Good for trying things out before code to a script file.

e Less than sign is the prompt to type something in.

Basic Uses of R

1 + 100

Calculator
[1] 101

Note that the answer is preceded by a number in brackets [1]. This is the index of the first element of the
line being printed in the console.

We will return to the concept of the index later. For now, just know that the output (101) is a single value,
indexed as [1].

What happens:
[Demonstrate]
14

Options:

e complete the command
¢ cancel the commend with Esc within RStudio

Note that order of operations (PEMDAS) applies. Practice:

3 +5 %2

[1] 13

(3+5) x2

[1] 16

2/10000
[1] 2e-04

Very large or small numbers get scientific notation.

Mathematical Functions A function is a code that performs a specific operation. For example, we might
want to know what our current working directory is. We can use getwd() to check.

getwd ()

[1] "C:/Users/cb88/0OneDrive - Rice University/Desktop/sw_carp"

As another example, mathematical functions perform a mathematical operation on the value or values we
provide. These values constitute the input to the function and are called “arguments” in R lingo.

Test a few of these:

log(1)

[1]1 O

exp(0.5) #Note same as e~ (1/2)
[1] 1.648721

Tips:

o Use # to comment on code.
e Use tab completion to find functions based on the first few characters.
e Get help on a function with ?function. Example:

7mean

starting httpd help server ... done

Logical Operators We can compare things in R with some basic logical operators

1 == 1 #Note use of double equal sign.

[1] TRUE

[demonstrate inequality] 1 != 2

1 <2

[1] TRUE

1>0

[1] TRUE

[1] TRUE

Variable Assignment

Store values in variables using <- assignment operator.

x <- 1/40
x

[1] 0.025

We can reuse this variable, such as by passing it to a function:

log(x)

[1] -3.688879

We can reassign new values to existing variables. This will overwrite the existing values:

x <- 100
X
[1] 100

Caution: Variable names cannot contain spaces and must start with a letter. We also recommend that you
not use the names of existing functions.

Vectorization

Variables and functions can have vectors as values. A vector is a set of values of the same data type, arranged
in a certain order. Examples:

1:5
[1] 1 2345
2°(1:5)

[11] 2 4 8 16 32

x <- 1:5
2°x

[1] 2 4 8 16 32

Remove Objects from the Environment

rm(x)

Install Packages

Codes to know:

install.packages("packagename") installs a package wupdate.packages() updates a package
library(packagename) loads a package into the current session

Also see the Packages tab in Miscellaneous to see available and loaded packages!

install.packages("ggplot2", "dplyr", "gapminder")
library(ggplot2)

library(dplyr)

library(gapminder)

Project Management in RStudio

One of the best pieces of advice you can follow as a researcher is to practice good project management
throughout your project.

There are several reasons to do so:

e To ensure the integrity of your data.

e To make it simpler to share your code with collaborators.

e To facilitate uploading code with your manuscript submission.
o To make it easier to pick up the project after a break.

RStudio has a built-in feature that facilitates a well-organized, self-contained and reproducible project. In
this portion of the workshop, you will learn how to create self-contained projects in RStudio and how to find
help.

To create a project:

Click File then New Project.

Click New Directory.

Click New Project.

Type the name of a directory where you'll store the project (e.g., my_ project).
Click Create a git repository if this is an option.

Click the Create Project button.

SO W=

This creates a project (.Rproj file) within the directory you created or selected.
All files that you store within this directory will be contained within the project.
This also gives the advantage of using relative file paths.

To open a project:

1. Navigate to the directory.
2. Double-click on the .Rproj file.

Some tips:

Treat data as read-only (don’t modify the data file itself).

e Store scripts for data cleaning in a separate folder.

o Treat generated output as disposible (everything should be reproducible through code).
o Save data files in a data sub-directory (folder).

Practice: Download data

Download the gapminder data from the link in the Etherpad (if not already done).

Save the file as gapminder_data.csv within your my_ project folder in a subfolder called /data.

Command Line

You can use the command line to look at a few features of the file.
Access the command line by clicking the Terminal tab in the Console pane.

Try a few functions that you learned in the Unix Shell lesson to examine the file:

File Size 1s -1h data/gapminder_data.csv

Word Count wc -1 data/gapminder_data.csv

Examine First Few Rows head data/gapminder_data.csv

Getting Help

As you get started, you will likely need some help with various functions.
Use 7function or help(function) to look at the documentation for a function.

Example:

help(write.table)

Look at the components of the help file:

e Description
o Usage

e Arguments
e Details

e Values

e See Also

e Examples

Recap:

We have covered the following:

o What R is; pros and cons

e Using R for calculation and basic mathematical functions
o Assigning values to variables

e What packages are and how to install them

e How to navigate in RStudio and create projects

e How to get help in R

Data Structures

Now we will start working with datal

What You Will Learn

o How to read data into R

o Basic data types: double, character, integer, and factor

 Basic data structures and useful functions: data frame, vector, list [time permitting]
o How to pull out (“index”) values from various data structures

R is extremely useful for working with tabular data. We will create a practice dataset called cats.

Reading and Writing Data into Dataframes
Begin by opening a script file (File - New File - R Script).

cats <- data.frame(c("calico", "black", "tabby"),
c(2.1, 5.0, 3.2),
c(1, 0, 1))

Run this code, and it creates a dataframe object, which you can also see in the global environment. Click
on the object to view it.

Now we will save the dataframe as a csv file in our /data directory using the write.csv() function:

write.csv(cats, "data/feline-data.csv", FALSE)

We make row names FALSE. Later, when we want to use this dataset again, we just have to import it with
the function read.csv():

cats <- read.csv("data/feline-data.csv")

Note that the path to this file is relative to the current working directory, which we set when we created a
project.

That’s why we only have to specify the sub-directory and file name (the beauty of relative vs. absolute paths
in RY).

Indexing a Dataframe (Preview)

Our cats dataset is tabular, also called rectangular, meaning that it has rows and columns.

We can pull out pieces of a data structure to look at them or use them in some way; this process is known
as “indexing.” Sometimes you will hear this called “subsetting” or “extracting.” For simplicity, I will try to
be consistent and call it indexing.

Let’s index a column.
cats$weight
[1] 2.1 5.0 3.2

Note that the $ operator indexes the column, in this case, the weight values. Let’s do it again with the
coat column:

cats$coat

[1] "calico" "black" "tabby"

Once again, the result is a series of values, this time for the coat column.
A handy feature of columns is that we can perform operations on the entire row.

For example, suppose we discovered that the scale we used to measure weight was incorrect by 2 kg, and
that all the cats’ weights should be 2 kg heavier.

cats$weight + 2

[1] 4.1 7.0 5.2

The result is the original weights, plus 2.
Let’s try another:

paste("My cat is", cats$coat)

[1] "My cat is calico" "My cat is black" "My cat is tabby"

This takes each element in the coat column and “pastes” it (so to speak) to the phrase “My cat is.”
How about this one?
[Demonstrate Error| catsweight + catscoat

This returns an error because the two columns contain different types of data—weight is numeric, while coat
is a string.

We can’t add those two together.

This is important: You need to know what type of data you have in each column, as the data type will place
some limits on what you can do.

Data Types
Let’s look at the type of data within each column:

typeof (cats$weight)

[1] "double"

typeof (cats$coat)

[1] "character"

typeof (cats$likes_string)

[1] "integer"

This illustrates two types of data: double (decimals) and character (aka string). You may also see integer
(whole numbers) for likes_ string.

Here are a couple of other data types:

typeof (TRUE)

[1] "logical"

typeof (1L)

[1] "integer"

In this case, TRUE is a logical (a binary data type that includes TRUE and FALSE), while 1L is an integer,
which is a whole number.

(Note that R makes numbers double by default, so we add the L to force 1 to be an integer.)
Structure

Another handy way to look at the type of data in each column is to examine the dataset’s structure using
str():

str(cats)

’data.frame’: 3 obs. of 3 variables:

$ coat : chr '"calico" "black" "tabby"
$ weight :num 2.1 5 3.2

$ likes_string: int 1 0 1

This shows the column names, the type of data, and the first few values within each column.
Note that the function also provides the overall R object type: a data frame.

All values in a single data frame column must be the same data type, but multiple types of data can be
contained within a data frame.

Factors

Another common data type is a factor, which is a categorical variable. We can convert a string variable to
a factor with the as.factor () function and look at the new structure of the data frame.

cats$coat <- as.factor(cats$coat)

str(cats)

’data.frame’: 3 obs. of 3 variables:

$ coat : Factor w/ 3 levels "black","calico",..: 2 1 3
§ weight :num 2.1 5 3.2

§ likes_string: int 1 0 1

This will store the three values of cats$coat as levels of that factor.

If we want to see the levels of a variable, we can call levels() on the column:

levels(cats$coat)

[1] "black" "calico" "tabby"

Vectors

Another type of R object is a vector. We saw vectors earlier when we introduced variable assignment.
A vector is an ordered list of one or more values of the same data type.
We can gather those values into a vector by using the ¢ function (short for “concatenate” or “combine”):

combine_vector <- c(2, 6, 3)
combine_vector

[1] 26 3

What about this one?

quiz_vector <- c(2, 6, "3")
quiz_vector

[1] ll2|l l|6|l |I3Il

Note that 2 and 6 were converted to strings, just like the “3”.

This is called coercion: If you attempt to create a vector with more than one data type, R will coerce some
of the values into the same data type as the others, based on a series of rules.

In general, a mix of numeric (double or integer) and character data will be coerced into character values.
Just be aware—this can be the cause of confusing messages in R!

Fortunately, you can also prompt coercion if you need to change the data type of a variable.

For example, in the cats data frame, the variable cats$likes_string contains double (numeric) data.
But we want it to be a logical, such that 1 means TRUE and 0 means FALSE.

cats$likes_string <- as.logical(cats$likes_string)
cats$likes_string

[1] TRUE FALSE TRUE

The output shows two things: First, the values were converted to logical values.
Second, the command over-wrote the previous values of cats$likes string.

This is a common practice: assigning new values to an existing variable.

Basic Vector Functions There are many things we can do with vectors. First, let’s create a small vector:

10

ab_vector <- c("a", "b")
ab_vector

[1] llall llbll

If we want to append some data to an existing vector, we can use the c() function.

combine_example <- c(ab_vector, "SWC")
combine_example

[1] llall Ilbll IISwCII

As a side note: When we do variable assignment, we need to type the name of the variable to see the result.
Alternatively, we can wrap the whole call in parentheses.

There are a couple of ways to create a vector composed of a series of numbers:

1:10

[1] 1 2 3 4 5 6 7 8 910

seq(10)

[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, 0.1)

[1]
[16]
[31]
[46]
[61]
[76]
[91] 10.

0 ~N U AN R
0 ~N U AN R
DD~ OO, O
0 ~N U sNR
NN NN NN
0 ~N O sNR
© W 0 W 0 W
0~ U DN -
© > OB OB
© N D W
O 01 © 01 O O
© ~N OB W
O, O L, O
O N O P W=
N NN NN N
O N O b W=
W 0 W 0o W M
O N O D W
DO OB ©
W 00 O Or W N
oo Ulo U o
O 00 O O W N
DD OO, O
O 00 O O W N
NN NN NN
O© 00 O o W N
0 W 0 W 0 W
O© 00 O o W N
© D OB OB

Note that we could assign any of these to a variable.

We can look at the first few values or the last few values of the vector:

sequence_example <- 20:25
head (sequence_example, 2)

[1] 20 21

Note that the n argument indicates the number of values we want.

tail(sequence_example, 4)

[1] 22 23 24 25

We can also find out how many values are in the vector:

11

length(sequence_example)

[1] 6

And what type of data the vector contains:

typeof (sequence_example)

[1] "integer"

Indexing Vectors Recall that indexing means pulling out one or more values from a data structure. The
index of a value is its position in the data structure.

For example, in a vector, the first value is assigned the index 1, the second value 2, and so forth.
Note that in R, indexing starts with the number 1 (not 0).

To index a vector, we use bracket notation, with the index or indices of the values we want within the
brackets directly after the vector name.

For example:

first_element <- sequence_example[1]
first_element

[1]1 20
This returns the first element of the vector sequence example, in this case 20.
To change the value of an element:

sequence_example[1] <- 30
sequence_example

[1] 30 21 22 23 24 25

Note that this code has overwritten the previous value for the first index. Be careful when overwriting!
Let’s do a challenge!
Start by making a vector of the numbers 1 through 26. Then multiply the vector by 2.

x <- 1:26
X <- x * 2
X

[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
[26] 52

Naming Vectors

Names provide some context for the data values. You can give names to elements in a vector. In R, names
are called attributes.

12

pizza_price <- c(5.64, 6.60, 4.50)
pizza_price

pizzasubito pizzafresh callapizza
it 5.64 6.60 4.50

Note that when the vector name is called, the names appear as metadata above the values.
You can use names to index the values of a vector by specifying the name in quotation marks and using

single brackets:

pizza_price["pizzasubito"]

pizzasubito
5.64

Finally, you can access the index names by themselves or even change them:

names (pizza_price)

[1] "pizzasubito" "pizzafresh" '"callapizza"

names (pizza_price) [3] <- "call-a-pizza"
names (pizza_price)

[1] "pizzasubito" '"pizzafresh" ‘"call-a-pizza"

Lists

The last data structure we will cover is a list, which is a collection of values that can have different data
types.

Let’s create one to practice:

list_example <- list(1, "a", TRUE, 1+4i)
list_example

[[1]]
[1] 1
#it

[[2]]
[1] "a"
#it

[[3]]
[1] TRUE
#Hit

[[4]1]
[1] 1+4i

Note that the structure of this list consists of four elements, each of which has a single value.

We can see this structure more clearly with the str() function:

13

str(list_example)

List of 4
$: num 1

$: chr "a"
$: logi TRUE
$: cplx 1+4i

Where have you seen dollar signs before? Data frame columns! That’s because data frame is a special type
of list!

A data frame a list of vectors of the same length, each vector containing a single type of data.

Indexing and Naming Lists Now let’s look at how to index a list.

If we want the entire contents of a list element, we use double brackets:

list_example[[2]]

[1] ngn

This returns “a” because that is the second element in the list.
Note that if there were several values in the second element, this notation would return all of those values.
Finally, we can make a named list, meaning that the elements have names:

another_list <- list("Numbers", 1:10, TRUE)
another_list

$title
[1] "Numbers"
##

$numbers

[1] 1 2 3 4 5 6 7 8 9 10
##

$data

[1] TRUE

Once again, there are three elements. However, the second element has 10 values.

Let’s index this list a few ways:

another_list[[1]] #Index the first element by index number.

[1] "Numbers"

another_list$title #Index the first element by name.

[1] "Numbers"

14

another_list[[2]] [3] #Indexz the third value within the second (i.e., numbers) element.

[1] 3

another_list$numbers[4] #Index the fourth value within the numbers element.

[1] 4

1. Indexed the entire first element by index number; the output was the title “Numbers.”

Indexed the same element by name.

3. Indexed the second element (the sequence of numbers) but added single brackets to indicate that we
wanted the third value in that element. This is sort of a combination of indexing a list (double brackets)
and indexing a vector (single brackets).

4. Used a combination of the element name and the single brackets to index the fourth value in the
numbers element.

o

Bottom line: There are many ways to do the same thing in R!
You might also notice that I have been adding some comments with #.

Remember: Commenting is a strongly recommended practice!

Indexing and Renaming Data Frames

Let’s do a bit more indexing, this time with the cats data frame.
If needed, re-load the code you used to create cats.
Try to predict what each value or values each index will return before you run the commands.

Or, go ahead and run the commands but see what the commonalities are across the outputs.

cats[1]

coat
1 calico
2 Dblack
3 tabby

cats["coat"]

coat
1 calico
2 Dblack
3 tabby

cats[[1]]

[1] calico black tabby
Levels: black calico tabby

15

cats$coat

[1] calico black tabby
Levels: black calico tabby

Each code returns the same values.
However, the structure of the first two differ from the structure of the last two.

The single brackets with the index number or column name in quotation marks both return a named list of
values.

In contrast, the double brackets with the index number or the $ notation both return a vector of values.

This may seem irrelevant now, but there will be times when you want a vector and others when you want a
list.

Let’s do a few more indexes unique to data frames:

cats[1, 1]

[1] calico
Levels: black calico tabby

cats[1, 1]
coat weight likes_string
1 calico 2.1 TRUE
cats[, 1]

[1] calico black tabby
Levels: black calico tabby

In the first code, we are specifying the row and column number that we want to index.
The row number goes on the left of the comma and the column number goes on the right.

In the second code, we indicate that we want the first row, but we don’t specify the column number after
the comma,; this will return all columns for that row.

In the third code, we indicate that we want the first column, but we don’t specify the row number before
the comma; this will return all rows for the first column.

Finally, let’s practice renaming the columns of the cats data frame; first we will copy the data into a new
data frame.

Then we will assign the names of this data frame’s variables (i.e., the column names) to a vector of names.

cats_rn <- cats
names (cats_rn) <- c("color", "kg", "plays")
cats_rn

color kg plays
1 calico 2.1 TRUE
2 black 5.0 FALSE
3 tabby 3.2 TRUE

16

Finding Specific Values in a Data Frame
Sometimes, we want to find values that meet some criterion. We can use logical operators to specify what
we are looking for.

Example 1: We want to find cats that weigh 3 or more kg.

cats[cats$weight >= 3,]

coat weight likes_string
2 black 5.0 FALSE
3 tabby 3.2 TRUE

Here, we tell R to look for rows in which the weight column is greater than or equal to 3, and then return
all columns.

Example 2: We want to find cats that are not tabby.

cats[cats$coat != "tabby",]

coat weight likes_string
1 calico 2.1 TRUE
2 Dblack 5.0 FALSE

R looks for rows in which coat is NOT (!) tabby and returns all columns.

Example 3: We want to find cats that are tabby or calico.

cats[cats$coat %in}% c("tabby", "calico"),]

coat weight likes_string
1 calico 2.1 TRUE
3 tabby 3.2 TRUE

Here, we use %in% to indicate that we want to look through the specified column (cats$coat) and find any
rows that are in the vector c("tabby", "calico"). We make sure to put a comma after to indicate that
we want all columns in the output.

Adding Columns and Rows to a Data Frame

A common task in working with data is adding columns and/or rows.

Recall that columns are vectors, so we will create a new vector that contains the data we want to add:

age <- c(2, 3, 5)
age

[1]1 2 3 5

Next, we add this as a column using cbind():

17

cats <- cbind(cats, age)

Note that we are overwriting the existing cats data frame using the assignment operator.
The vector must contain the same number of values as number of rows in the data frame. Let’s see what

happens if it doesn’t:

age2 <- c(2, 3, 5, 12)
cbind(cats, age2)

We get an error because of the discrepancy between the number of rows in cats and the number of values
in age2.

Now let’s add a row. First we have to create a list, then bind it to the data frame with rbind ().

newRow <- list("tortoiseshell", 3.3, TRUE, 9)
cats <- rbind(cats, newRow)

Warning in ‘[<-.factor‘(‘*tmp*‘, ri, value = "tortoiseshell"): invalid factor
level, NA generated

cats

H# coat weight likes_string age
1 calico 2.1 TRUE 2
2 black 5.0 FALSE 3
3 tabby 3.2 TRUE 5
4 <NA> 3.3 TRUE 9

Note that the coat value in the fourth row is listed as NA because we previously defined coat as a factor
with three levels.

The value “tortoiseshell” isn’t recognized as one of those levels, so R replaces it with NA.

Removing Values

We can remove rows that have NA values.

The fourth row of the cats dataframe has an NA value. If we want to remove any rows that have one or
more NA values, we can use the following code:

cats <- na.omit(cats)

cats

coat weight likes_string age
1 calico 2.1 TRUE 2
2 Dblack 5.0 FALSE 3
3 tabby 3.2 TRUE 5

This removes the row altogether, even though there is only one NA. Sometimes that is what you want to
do. Be careful using this approach, however, as it can substantially reduce the number of rows (and thus
observations) in your dataset.

18

Removing Rows or Columns with -

Finally, we can remove rows and columns using indexing and the minus sign, which indicates “not.” Example:

cats <- cats[-3,]

cats

coat weight likes_string age
1 calico 2.1 TRUE 2
2 black 5.0 FALSE 3

This will remove the third row of data.

cats <- cats[, -3]

This will remove the third column.

Recap:
We have covered a lot! Here are some of the highlights:

e How to read data into R

o What data frames are and how they are related to vectors (and lists)

o How to convert data types (e.g., from character to factor or from numeric to logical)
e How to index data frames and vectors

e How to add and remove rows and columns from a data frame

Next, we will dive into a real dataset to work on data wrangling, plotting, and creating great-looking reports
in R. Be sure to save your script file (e.g., cats_script.R).

Data Wrangling

We spent a lot of time working with the cats data frame this morning. Now we are ready to move on to a
real dataset, from gapminder.

What You Will Learn

e How to summarize variables in a data frame

e How to perform basic calculations on subgroups

e How to add variables to a data frame based on existing variables
e How to improve your coding efficiency overall!

If you haven’t already saved the gapminder dataset in your data subdirectory, do that first.

Next, open a new script file, then read in the gapminder data.

gapminder <- read.csv("data/gapminder_data.csv", TRUE)
Note that we are reading in string variables as factors. You won’t always want to do that—be sure to think

about what the string values mean and whether they can be considered categories.

Next, look at the structure of the data:

19

str (gapminder)

’data.frame’: 1704 obs. of 6 variables:

$ country : Factor w/ 142 levels "Afghanistan",..: 1111111111

$ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...

$ pop : num 8425333 9240934 10267083 11537966 13079460 ...

$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 333333333 ...
$ lifeExp : num 28.8 30.3 32 34 36.1 ...

$ gdpPercap: num 779 821 853 836 740 ...

There are six variables (country, year, population, continent, life expectancy, and GDP per capita) and 1,704
rows.

We can obtain descriptive statistics (quartiles, mean, and median) for any numeric data and frequencies for
any factor data using summary():

summary (gapminder)

country year pop continent
Afghanistan: 12 Min. :1952 Min. :6.001e+04 Africa :624
Albania 12 1st Qu.:1966 1st Qu.:2.794e+06 Americas:300
Algeria : 12 Median :1980 Median :7.024e+06 Asia :396
Angola : 12 Mean :1980 Mean :2.960e+07 Europe :360
Argentina : 12 3rd Qu.:1993 3rd Qu.:1.959e+07 Oceania : 24
Australia : 12 Max. 12007 Max. :1.319e+09

(Other) 11632

lifeExp gdpPercap

Min. :23.60 Min. : 241.2

1st Qu.:48.20 1st Qu.: 1202.1

Median :60.71 Median : 3531.8

Mean :59.47 Mean : 7215.3

3rd Qu.:70.85 3rd Qu.: 9325.5

Max. :82.60 Max. :113523.1

##

Note that if there are many levels of a factor (such as in country), R might not give you all of them.

We can also get the number of rows and columns quickly:

nrow (gapminder)

[1] 1704

ncol (gapminder)

[1] 6

dim(gapminder)

[1] 1704 6

20

Of course, the same info is available through str(). Remember: There is more than one way to do most
things in R! But sometimes it’s helpful to know these functions, as they can be embedded in more complex
code that you may find online.

Here are a few more functions to get started with this dataset:

colnames (gapminder)

[1] "country" "year" "pop" "continent" "lifeExp" "gdpPercap"
head(gapminder)

country year pop continent lifeExp gdpPercap
1 Afghanistan 1952 8425333 Asia 28.801 779.4453
2 Afghanistan 1957 9240934 Asia 30.332 820.8530
3 Afghanistan 1962 10267083 Asia 31.997 853.1007
4 Afghanistan 1967 11537966 Asia 34.020 836.1971
5 Afghanistan 1972 13079460 Asia 36.088 739.9811
6 Afghanistan 1977 14880372 Asia 38.438 786.1134
tail(gapminder, 15)

country year pop continent lifeExp gdpPercap

1690 Zambia 1997 9417789 Africa 40.238 1071.3538
1691 Zambia 2002 10595811 Africa 39.193 1071.6139
1692 Zambia 2007 11746035 Africa 42.384 1271.2116
1693 Zimbabwe 1952 3080907 Africa 48.451 406.8841
1694 Zimbabwe 1957 3646340 Africa 50.469 518.7643
1695 Zimbabwe 1962 4277736 Africa 52.358 527.2722
1696 Zimbabwe 1967 4995432 Africa 53.995 569.7951
1697 Zimbabwe 1972 5861135 Africa 55.635 799.3622
1698 Zimbabwe 1977 6642107 Africa 57.674 685.5877
1699 Zimbabwe 1982 7636524 Africa 60.363 788.8550
1700 Zimbabwe 1987 9216418 Africa 62.351 706.1573
1701 Zimbabwe 1992 10704340 Africa 60.377 693.4208
1702 Zimbabwe 1997 11404948 Africa 46.809 792.4500
1703 Zimbabwe 2002 11926563 Africa 39.989 672.0386
1704 Zimbabwe 2007 12311143 Africa 43.487 469.7093

typeof (gapminder)

[1] "list"

Using dplyr
For the next several exercises, we will use the dplyr{} package.

library(dplyr)

##
Attaching package: ’dplyr’

21

The following objects are masked from ’package:stats’:
##
#i# filter, lag

The following objects are masked from ’package:base’:
##
intersect, setdiff, setequal, union

Let’s start with a common issue. We want to find the mean value of some subset of the data, such as the
mean GDP for all of the rows associated with Africa.

We could do this the long way in base 1:

mean (gapminder [gapminder$continent == "Africa", "gdpPercap"])

[1] 2193.755

But if we wanted do run the same code on other continents, we would need to keep copying and pasting,
changing the name of the continent each time. That can lead to error.

Instead, let’s get a preview of what dplyr{} can do. [Demo only?]
gapminder %>%

group_by(continent) %>%
summarize (mean (gdpPercap))

A tibble: 5 x 2
continent mean

#i# <fct> <dbl>
1 Africa 2194.
2 Americas 7136.
3 Asia 7902.
4 Europe 14469.
5 Oceania 18622.

We will cover the following aspects of dplyr{}:

o select()

o rename()

o filter()

o group_by()
o summarize()
o mutate()

* pipe (%>%)

Selecting Variables The gapminder dataset has a limited number of variables, but some datasets are
huge. We may not want to work with all of the variables, so we can select those that we are interested in
and assign this smaller subset of data to a new data frame.

year_country_gdp <- select(gapminder, year, country, gdpPercap)

22

We have specified the dataset as the first argument and the variables to include as subsequent arguments.

Alternatively, we can specify which variables NOT to include:

smaller_gapminder_data <- select(gapminder, -continent)

This will select all variables except continent.
To further increase efficiency, we can use the pipe operator (%>%) to chain together several functions. A

dplyr pipe always starts with the name of the data frame. Example:

year_country_gdp <- gapminder %>%
select(year, country, gdpPercap)

Note: Make sure you put the pipe at the end of a line (not at the start of the next line).

Renaming Variables In our previous lesson, we saw one way of renaming variables. In dplyr, you can
use the rename () function.

This function uses the syntax rename (new_name = old_name). Example:
tidy_gdp <- year_country_gdp %>%

rename (gdpPercap)
head(tidy_gdp)

year country gdp_per_capita
1 1952 Afghanistan 779.4453
2 1957 Afghanistan 820.8530
3 1962 Afghanistan 853.1007
4 1967 Afghanistan 836.1971
5 1972 Afghanistan 739.9811
6 1977 Afghanistan 786.1134

Filtering Sometimes we only want to look at certain rows. Filtering is indexing in the context of a dplyr
pipe. Example:

year_country_lifeExp_Africa <- gapminder %>%
filter(continent == "Africa") %>%
select(year, country, lifeExp)

This creates a new data frame based on the gapminder data frame, which has been filtered to only include
rows for which the continent is Africa. Then, the variables year, country, and lifeExp are selected.

Two notes:

o Use double equal signs and quotation marks around the filtering value (if it is character or factor data
type).

e Pay close attention to the order of functions in the pipe. If we called select first with just three
variables, we wouldn’t have continent to filter on.

23

Group By A common practice in data analysis is analyzing various sub-groups within the sample or
population and presenting the results in one place, sometimes known as “split - apply - combine.” The
group_by () function is perfect for this task, as we saw earlier in the preview of dplyr.

However, the function doesn’t do much on its own. Let’s look:

gapminder %>
group_by(continent)

A tibble: 1,704 x 6

Groups: continent [5]

country year pop continent lifeExp gdpPercap
<fct> <int> <dbl> <fct> <dbl> <dbl>
1 Afghanistan 1952 8425333 Asia 28.8 779.
2 Afghanistan 1957 9240934 Asia 30.3 821.
3 Afghanistan 1962 10267083 Asia 32.0 853.
4 Afghanistan 1967 11537966 Asia 34.0 836.
b5 Afghanistan 1972 13079460 Asia 36.1 740.
6 Afghanistan 1977 14880372 Asia 38.4 786.
7 Afghanistan 1982 12881816 Asia 39.9 978.
8 Afghanistan 1987 13867957 Asia 40.8 852.
O Afghanistan 1992 16317921 Asia 41.7 649.
10 Afghanistan 1997 22227415 Asia 41.8 635.
... with 1,694 more rows

The only change we notice is that “Groups: continent [5]” appears at the top. This message lets us know that
a grouping structure has been overlaid on the data and is ready to use with the next function: summarize().

Summarize Let’s revisit the code I demonstrated earlier to obtain the mean GDP per capita for each
continent.

gapminder >%
group_by(continent) %>
summarize (mean (gdpPercap))

A tibble: 5 x 2
continent mean

<fct> <dbl>
1 Africa 2194.
2 Americas 7136.
3 Asia 7902.
4 Europe 14469.
5 Oceania 18622.

Note that the summarize () function creates a new variable, mean_gdpPercap, based on each group’s mean
GDP. The output is a small table with that new variable.

Let’s try another one. We will calculate mean life expectancy by country.
lifeExp_bycountry <- gapminder 7%>%
group_by (country) %>%

summarize (mean (lifeExp))
lifeExp_bycountry

24

A tibble: 142 x 2

country mean_lifeExp
<fct> <dbl>
1 Afghanistan 37.5
2 Albania 68.4
3 Algeria 59.0
4 Angola 37.9
b5 Argentina 69.1
6 Australia 4.7
7 Austria 73.1
8 Bahrain 65.6
O Bangladesh 49.8
10 Belgium 73.6
... with 132 more rows

Note that the output represents the mean for each country across many years, as each country has several
rows of data, each representing a different year.

Arrange We might want to view the output in order from smallest to largest values (or vice versa). We can
use arrange () for this. Example: We want to see the five countries with the shortest mean life expectancy.

lifeExp_bycountry %>%

arrange(mean_lifeExp) %>%
head (5)

A tibble: 5 x 2

country mean_lifeExp
<fct> <dbl>
1 Sierra Leone 36.8
2 Afghanistan 37.5
3 Angola 37.9
4 Guinea-Bissau 39.2
5 Mozambique 40.4

Note that arrange () organizes in ascending order. To obtain descending order, use the argument desc()
inside arrange ():

lifeExp_bycountry %>%

arrange (desc(mean_lifeExp)) %>%
head(5)

A tibble: 5 x 2

country mean_lifeExp
#i# <fct> <dbl>
1 Iceland 76.5
2 Sweden 76.2
3 Norway 75.8
4 Netherlands 75.6
5 Switzerland 75.6

Alphabetical order works for character data (with A-Z order the ascending default).

25

Let’s look at a couple of additional features of dplyr.

First, we can group by more than one variable and summarize the data by defining more than one variable.

gdp_pop_bycontinents_byyear <- gapminder %>%
group_by(continent, year) %>%
summarize (mean (gdpPercap) ,
sd (gdpPercap))

‘summarise() ¢ has grouped output by ’continent’. You can override using the
¢.groups‘ argument.

gdp_pop_bycontinents_byyear
A tibble: 60 x 4

Groups: continent [5]
continent year mean_gdpPercap sd_gdpPercap

<fct> <int> <dbl> <dbl>
1 Africa 1952 1253. 983.
2 Africa 1957 1385. 1135.
3 Africa 1962 1598. 1462.
4 Africa 1967 2050. 2848.
5 Africa 1972 2340. 3287.
6 Africa 1977 2586. 4142,
7 Africa 1982 2482. 3243.
8 Africa 1987 2283. 2567 .
9 Africa 1992 2282. 2644 .
10 Africa 1997 2379. 2821.
... with 50 more rows

The output shows mean and standard deviation for GDP each year for each continent. Pretty neat!

Count and n We frequently want to know the number of observations in each group. For example, we
want to find out how many countries were included for each continent in the year 2002, and we want to sort
the results by number of countries. We can use count ().

gapminder %>

filter(year == 2002) %>%
count (continent, TRUE)

continent n

1 Africa 52
2 Asia 33
3 Europe 30
4 Americas 25
5 Oceania 2

We also may need to include the number of observations within the calculation we perform with summarize ().
For example, if we want to calculate the standard error of life expectancy by continent, we can include n()
with no argument specified within our definition. Example:

26

gapminder %>
group_by(continent) %>
summarize (sd(lifeExp)/sqrt(n()), n())

A tibble: 5 x 3

continent se_le n
<fct> <dbl> <int>
1 Africa 0.366 624
2 Americas 0.540 300
3 Asia 0.596 396
4 Europe 0.286 360
5 Oceania 0.775 24

Pay close attention to punctuation! There are a lot of parentheses within this call. We have grouped by
continent and then calculated the standard error of life expectancy, which is defined as the standard deviation
divided by the square root of the sample size (in this case, number of rows).

Mutate The last dplyr function we will cover, mutate(), is for creating a new variable within the data
frame.

Let’s say we want to calculate total GDP for each country. We can multiply the gdpPercap by the population
size.

gdp_total <- gapminder %>%

mutate (gdpPercap * pop)
gdp_total

We see that a new column, gdp, has been added, which is the product of gdpPercap and pop.

Recap
We have covered the following functions in dplyr{}:

¢ select to select variables

« filter to filter rows

e group_ by to create subgroups for further analysis
e summarize to calculate statistics

e count and n to obtain frequencies

e mutate to create new variables

We also covered rename () and the pipe (%>%) along the way.

Now it’s time for plots!

Plotting Data

For this section, we will use the ggplot2{} package:

library(ggplot2)

This package is based on the grammar of graphics theory, which suggests that any plot can be built from
the same set of components:

27

e Data
o Mapping aesthetics, which connect the data to different aspects of the plot (e.g., x and y axes; color)

o Graphical layers, which change the type and look of the plot (e.g., scatterplot vs. boxplot; rectangular

vs. polar coordinates).

What You Will Learn

e How to create a scatterplot

e How to create a line plot

e How to add dimensions to a plot

e How to change the attributes of plot elements

How to add statistical models and transformations to a plot

e How to create a pipeline from dplyr to ggplot2
o How to create facets (tiny multiples)

Getting Started: The Plot Layout

The basic function is ggplot (); any arguments given to this function apply to the entire plot. At a minimum,
the arguments include the data and the mapping aesthetics.

ggplot(gapminder, aes(gdpPercap, lifeExp))
80-
60 -
a
<
L
£
40 -
0 30000 60000 90000
gdpPercap

This builds the plot space and indicates what the x and y coordinates correspond to. However, we need to
tell R what kind of geographical representation of the data we want by adding a geom layer. We will use
the function geom_point () for a scatterplot, but there are many geom functions, as you will discover.

28

Adding a Geom Layer

aes(gdpPercap, lifeExp)) +

ggplot(gapminder,
geom_point ()
80 -
°
°
)
60 - -
°
< °
@
40 -
)
0 30000 60000 90000
gdpPercap

Each of the dots represents an observation (i.e., a country during a particular year). It looks like there is a

logarithmic relationship between gdpPercap and lifeExp.
Challenge: Try creating a scatterplot that shows changes in life expectancy over time. Use the same code,

but modify the x axis. (Hint: there is a variable called year.)

gapminder, aes(year, lifeExp)) +

ggplot(
geom_point ()

29

80-

60 -

lifeExp

40 -

1950 1960 1970 1980 1990 2000
year

Adding Aesthetics

Let’s add another dimension to this map. We want to show how continent is related to the other two
variables. We can use an additional aesthetic, color, to represent that variable.

ggplot(gapminder, aes(year, lifeExp, continent)) +
geom_point ()

30

80 - I
[J
s | l | l
° []
: ! | continent
60 - l : i I | : ! o Africa
% ! l ' ® Americas
i -
[)
2 s : I I ' ' ! ® Asia
' ' ® Europe
. ' H ! 4 * @ Oceania
40 - i ’ ' ! l ;)
8 °
[]
S .
[]
[]
1950 1960 1970 1980 1990 2000
year

This is much more informative! Note that color is categorical and should generally be applied to factors.

We could add other dimensions, but we should be cautious about adding too many, as it could make the
plot overly complicated and confusing.

Now let’s change the geom layer to see another type of graphic representation. Change over time is nicely
represented with lines, so let’s use geom_line():

ggplot(data = gapminder, mapping = aes(x = year, y = lifeExp, color = continent)) +
geom_line()

31

N << <§
| —1
/ / / / continent
60 - = — Africa
% ____/ —— Americas
El_g [— Asia
- \\ \ —— Europe
" \\ —— Oceania
\\

1950 1960 1970 1980 1990 2000
year

This looks a little weird, as there is only one line per continent. Instead, we want to show the variability
across countries within each continent, so we can use the aesthetic “group” to show each country’s line

separately.

ggplot(data = gapminder, mapping = aes(x = year, y = lifeExp, group = country, color = continent)) +
geom_line()

32

80-

continent
60- —— Africa
—— Americas

— Asia

lifeExp

— Europe

—— Oceania

1950 1960 1970 1980 1990 2000
year

This is still a rather busy plot, but it does make the trends by continent easier to see.

Attributes

Aesthetics are aspects of the plot that are mapped to specific variables. It is also possible to change aspects
of the plot globally; we call those attributes. For example, if you didn’t want to use color to represent
continent and just wanted all of the dots to be a particular color, you could specify a color argument in the

geom layer, like this:

ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
geom_point(color = "blue")

33

80-

[]
[J
[]
60 - -
o
2 °
W
Q
40 -
[]
0 30000 60000 90000
gdpPercap

R will accept names of colors (in quotation marks) and hex codes!

Statistics and Transformations

The layered approach of ggplot2 makes it easy to add models to the plot and to transform various aspects,
like the scale of the x or y variable. Let’s try it.

We start with our original plot, which we saw showed a possible logarithmic relationship between gdpPercap
and lifeExp: [copy code]

ggplot(gapminder, aes(gdpPercap, lifeExp)) +

geom_point ()

34

80-

60 -

lifeExp

40 -

60000 90000

0 30000
gdpPercap

Now we transform it by adding an attribute and a scale layer. The attribute will be “alpha”, which is the
transparency of the dots. Setting this value to < 1 will reveal where there is overplotting. The scale layer

will be a logarithmic transformation of the x axis. [copy code]

aes(gdpPercap, lifeExp)) +

gapminder,
0.5) +

geom_point(
scale_x_logl0()

gegplot(

35

80-

[}
@
60 - -1
]
2)
w
L
°
40-
°
1le+03 le+04 le+05
gdpPercap

The results show the relationship between the two variables much more clearly. It is also more apparent

where the bulk of the countries lies.
Let’s add one more layer: a statistical model. [copy code]

ggplot(data = gapminder, mapping = aes(x = gdpPercap, y = lifeExp)) +
geom_point(alpha = 0.5) +

scale_x_logl0() +
geom_smooth(method = "Im")

‘geom_smooth() ¢ using formula ’y ~ x’

36

80-

40 -

le+05

1e;04
gdpPercap

This adds a linear model of the relationship between the two variables. We can change the attributes of the

model with additional arguments in the geom_smooth () layer:
= gdpPercap, y = lifeExp)) +

= gapminder, mapping = aes(x

ggplot(data
= 0.5) +

geom_point(alpha

scale_x_logl0() +
geom_smooth(method = "1m", se = FALSE, size = 1.5, color = "orange")

‘geom_smooth() ¢ using formula ’y ~ x’

37

80 -

(<)
(]
)
o 60- e
> e
y °
<)
40-
)
1le+03 le+04 le+05

gdpPercap

Note that the argument se = FALSE removes the error band around the regression line.

Combining ggplot and dplyr

Unlike the other tidyverse packages, ggplot2 uses + rather than %>% to add layers.
However, you can pipe an entire chunk of ggplot2 code into other code (e.g., in dplyr) using the %>%.

If you do that, you don’t have to include the data as one of the ggplot() arguments, as long as the data
starts the pipe.

Let’s look at an example.

gapminder %>%

filter(continent == "Americas") %>%

ggplot (mapping = aes(x = year, y = lifeExp, group = country)) +
geom_line()

38

80-

70 -

50-

40 -

1950 1960 1970 1980 1990 2000
year

Note that we switched between the pipe operator and a plus.

Facets

Although we can assign an aesthetic to a factor (such as country or continent), it is sometimes better to
facet on that variable.

Faceting involves creating separate plots for each level of the factor.

For example, instead of using group = country, we could facet on country by using the function facet_wrap ()
and specifying ~ country as the variable we want to facet on.

In this code, I will also introduce the theme() function:

gapminder %>%

filter(continent == "Americas") %>%

ggplot(aes(year, lifeExp)) +
geom_line() +

facet_wrap(~ country) +

theme (element_text(45))

39

Argentina Bolivia Brazil Canada Chile

e e e e e

HOIO~I0
QOO0

Colombia Costa Rica Cuba Dominican Republic Ecuador

\
1A}
LB
\
\

El Salvador Guatemala Haiti Honduras Jamaica
o 80-
X 70_ /_/—————
% 28-/ / / /
= 40-
Mexico Nicaragua Panama Paraguay Peru
80 -
70 - // R
60 - /
50_ /
40-
Puerto Rico Trinidad and Tobago United States Uruguay Venezuela
80-
60 -
-
OO NI 1 OO 100! O QOO 1 OO 'L OO0 0O
LT L SOV PO LT 2PN 970707200
AN RN SN N IS BN N OO NN R SN NN NN SN RN NN

Now there is a line plot for each country in the “Americas” continent! We also specified that the x axis text
should be set at an angle.

Let’s do a little more with text before saving the plot.
Text Modifications

First, we will copy the code we just ran and adjust the color attribute of the lines. [copy code; add blue to
geom]

Next, we will add a labels layer with the function labs():

gapminder %>

filter(continent == "Americas") %>%
ggplot(aes(year, lifeExp)) +
geom_line("blue") +
facet_wrap(~ country) +
labs("Year", "Life Expectancy", "Figure 1: Life Expectancy in the Americas") +
theme (element_text(45))

40

Figure 1. Life Expectancy in the Americas

Argentina Bolivia Brazil Canada Chile
Colombia Costa Rica Cuba Dominican Republic Ecuador
a §§ =
% El Salvador Guatemala Haiti Honduras Jamaica
B gg
o
>< - /
5 40-
.‘% Mexico Nicaragua Panama Paraguay Peru
Puerto Rico Trinidad and Tobago United States Uruguay Venezuela
gg SSSeSSEREE= e Ee s
11O 1O OO IO IO DI IO IO 1O IOU D' DD OO U D DD
O R TR PN O RT TR PN 970N 0T D O
R R TR IR DA DT IR DT kTR R TR TR R R

The result is a pretty nice figure!

Saving and Exporting a Plot

The final step is to save our plot and export it to our directory.

First, create a /results folder in your working directory. You can do that manually or by using the command
line—whichever you feel comfortable doing. If you are in the command line, recall that the command to make
a directory is mkdir and the name of the directory you want to create (in this case, results). You might want
to double-check to make sure you are in the right working directory (check with pwd).

[Demonstrate in command line: pwd then mkdir results]
Next, save the plot you just created to an object called 1ifeExp_plot. You can copy the code from above

and add the object name and assignment operator. [copy]

lifeExp_plot <- gapminder %>%

filter(continent == "Americas") %>%
ggplot(aes(year, lifeExp)) +
geom_line("blue") +
facet_wrap(~ country) +
labs("Year", "Life Expectancy", "Figure 1: Life Expectancy in the Americas") +
theme (element_text(45))

Next, use the ggsave() function:

41

ggsave("results/lifeExp.png", lifeExp_plot, 12,
10, 300, "cm")

Now check your results folder—the png file should be there!

Here is an alternative way to save a plot: from the Plots tab, click the Export button and select the format
you want to save the plot in (pdf, png, jpg).

Creating Reports

[Time permitting]

What You Will Learn

e How to use R Markdown to write reports
o How to save a report file in different formats

What Is R Markdown?

Markdown is a light-weight markup language for creating webpages. The R version combines Markdown
with R code chunks to integrate analyses and images created in R into an html webpage.

It’s recommended to install and load the knitr{} package:

install.packages("knitr")
library(knitr)

Next, we create a new file - instead of R script, choose R Markdown. You can give the document a title and
include your name as the author. For now, keep HTML as the output format. Then click OK.

The first thing to notice is the header. You can change this or leave it as-is.

Next, you will see some sample text and a code chunk. This provides a model of how you will include code
in the report.

For now, delete that stuff and practice the following features of Markdown.

Changing Font Attributes

¢ bold with double-asterisks
¢ italics with underscores
e code-type font with back-ticks

Examples:
This is bold
This is italicized

This is code

42

Make a List

Create a numbered list with numbers and a bulleted list with * or -. Make sure you include a line space
before.

1. bold
2. italics
3. code-type font

Headings

Use hashtags for headings and subheadings; be sure to put a space between the hastag(s) and the heading:

[Demonstrate with hashtags 1-4] Title Main section Sub-section Sub-sub section

Websites
To include a hyperlink, bracket the text you want to link, then put the URL immediately after (no space)
in parentheses.

Carpentries Home Page

Code Chunks

Code chunks begin with three back-ticks, followed by {r chunk name}, the code, and three more back-ticks.
[Demonstrate with back-ticks]

{r load__data}

gapminder <- read.csv(“data/gapminder_data.csv”, stringsAsFactors = TRUE)

{r load-ggplot2}

library(ggplot2)

{r make-plot} plot(lifeExp ~ year, data = gapminder)

In addition, you can choose whether or not to show the code chunk in the report by modifying the options.

For example, you may need to load libraries to run code, but you don’t want to show those library code
chunks.

You can set the arguments echo = FALSE and message = FALSE in the {r} options. This will suppress the
output and any messages associated with it.

[Demonstrate with back-ticks]

{r load_libraries, echo=FALSE, message=FALSE}

library(“dplyr”)

library(“ggplot2”)

As another example, you may want to suppress all code and just show the results (e.g., tables and figures).
You can set the global options at the beginning of the document to specify this.

In addition, you can indicate where the figures should be exported, such as a directory called Figs.

(Note that you would need to create that directory first)

43

https://carpentries.org/

[Demonstrate with back-ticks]
{r global_options, echo=FALSE}

knitr::opts_ chunk$set(fig.path="Figs/”, message=FALSE, warning=FALSE, echo=FALSE, results=“hide”,
fig.width=11)

Inline code

You can also include inline code that makes numbers reproducible. Use back-ticks around the letter r and
the code.

4

For example, let’s say you have a report that needs to be updated regularly with the latest results of an
analysis. You have data from a particular year, but you will need to update it each year.

You can define the results as a variable (e.g., x) in a code chunk, hide that code chunk, and include the
variable in inline code, like this:

[Demonstrate with back-ticks]

{r variable definition, echo = FALSE, results = “hide”}

US_ gdp <- gapminder$gdpPercap %>% filter(country == “United States”, year == 2007)
[Demonstrate with single back-ticks instead of brackets]

The current US gross domestic product per capita is [r US__gdp].

The current gdp is 4.2951653 x 10%.

Knit the Document

Click the knit button, and it will pull everything together. If you have errors, it will halt and give you the
line(s) where the first error occurred. Sometimes this is a process!

The output will be an html file. You can also knit as a pdf, but there are some additional packages you need
to install first.

Recap and Resources

This lesson covered the following topics:

e Learning to use R and RStudio

e Understanding data types and structures

e Reading data into R

o Working with vectors and data frames

e Data wrangling with dplyr

« Creating plots with ggplot2

e Writing reports in R Markdown with knitr

44

	Introduction to R and RStudio
	What You Will Learn
	Before Starting
	Pros and Cons of Using R
	Tour of RStudio
	Basic Uses of R
	Variable Assignment
	Vectorization
	Remove Objects from the Environment
	Install Packages

	Project Management in RStudio
	To create a project:
	To open a project:
	Some tips:
	Practice: Download data
	Command Line
	Getting Help

	Recap:
	Data Structures
	What You Will Learn
	Reading and Writing Data into Dataframes
	Indexing a Dataframe (Preview)
	Data Types
	Structure
	Factors
	Vectors
	Naming Vectors
	Lists
	Indexing and Renaming Data Frames
	Finding Specific Values in a Data Frame
	Adding Columns and Rows to a Data Frame
	Removing Values
	Removing Rows or Columns with -
	Recap:

	Data Wrangling
	What You Will Learn
	Using dplyr
	Recap

	Plotting Data
	What You Will Learn
	Getting Started: The Plot Layout
	Adding a Geom Layer
	Adding Aesthetics
	Attributes
	Statistics and Transformations
	Combining ggplot and dplyr
	Facets
	Text Modifications
	Saving and Exporting a Plot

	Creating Reports
	What You Will Learn
	What Is R Markdown?
	Changing Font Attributes
	Make a List
	Headings
	Websites
	Code Chunks
	Inline code
	Knit the Document

	Recap and Resources

