
Visualizing Data with ggplot2 in R

Catherine Barber

2023-03-10

Goal and Learning Outcomes

Goal: The goal of this lesson is for you to create efective data visualizations using ggplot2 in R.

Learning Outcomes: During this lesson, you will demonstrate your ability to. . .

• Explain the layered approach of the grammar of graphics.
• Identify common types of plots and their associated geoms.
• Create basic and enhanced histograms.
• Create basic and enhanced scatter plots.
• Create basic and enhanced box plots.
• Create basic and enhanced bar plots.

The Grammar of Graphics

Wilkinson (2005) proposed a series of “rules” for creating virtually all graphical forms. The package ggplot,
developed by Hadley Wickham, is based on these rules and takes a layered approach to creating visualizations.
The basic format involves specifying data, aesthetic mapping (i.e., how variables will be represented in the
visual space), a coordinate system, and various layers including geoms (visual objects), scales, and so forth.

In this lesson, you will focus on using ggplot2 to create four types of graphs: a histogram, a scatter plot, a
bar plot, and a box plot. However, you can create numerous other types of graphs in ggplot2, such as density
plots, box plots, violin plots, maps, and much more. The lesson will demonstrate the “layered” approach by
beginning with the simplest form of a graph and then enhancing it with various changes to the code. Note
that you will save your changes to new plot objects as you go along; however, once you become comfortable
with the functions, you can combine numerous layers into the code for a single plot, thereby saving time and
memory.

The Data: Netfix Movies and TV Shows

For this lesson, you will work with a dataset originally created by Soero (2022) and shared in Kaggle. The
dataset has been cleaned and includes a limited number of variables for all movies and TV shows that were
aired on Netfix in 2019. Of particular interest will be the movie/show genres, their length (i.e., runtime),
and their average IMDB and TMDB scores.

Import the Dataset and Load the Tidyverse

library(tidyverse)
library(tinytex)

1

https://www.kaggle.com/datasets/victorsoeiro/netflix-tv-shows-and-movies

...

titles_short <- read.csv("titles_short.csv")

Exercise 1: Create a Histogram

Begin by fltering the data to include only movies, save this as an object called movies, and look at the
structure of the object.

movies <- titles_short %>%
filter(type == "MOVIE")

str(movies)

’data.frame’: 3744 obs. of 9 variables:
$ title : chr "Taxi Driver" "Deliverance" "Monty Python and the Holy Grail" "The Dirty Dozen"
$ type : chr "MOVIE" "MOVIE" "MOVIE" "MOVIE" ...
$ release_year: int 1976 1972 1975 1967 1979 1971 1967 1980 1961 1966 ...
$ runtime : int 114 109 91 150 94 102 110 104 158 117 ...
$ genre : chr "drama" "drama" "fantasy" "war" ...
$ country : chr "US" "US" "GB" "GB" ...
$ rating : chr "R" "R" "PG" NA ...
$ imdb_score : num 8.2 7.7 8.2 7.7 8 7.7 7.7 5.8 7.5 7.3 ...
$ tmdb_score : num 8.18 7.3 7.81 7.6 7.8 ...

Next, create a basic plot that only contains the data and the aesthetic mappings. Note that nothing will be
represented because you have not specifed what type of plot you are creating; however, this step can save
you a bit of time later.

base_plot <- ggplot(data = movies, mapping = aes(x = imdb_score))
base_plot

2

2.5 5.0 7.5
imdb_score

Add the Geom Layer

The next step is to add the geom layer. Unlike other tidyverse packages in which the pipe (%>%) is used
to show subsequent steps, in ggplot2 layers are added with a +. However, note that the main ggplot()
function can be piped into a longer pipe using %>%. An example is shown in the section on scatter plots.

base_plot +
geom_histogram()

3

0

100

200

300

400

2.5 5.0 7.5
imdb_score

co
un

t

Adding the geom layer calls a histogram on the variable imdb_score, which was specifed as x in the previous
call.

Change the Appearance of the Distribution

You can change the appearance of the distribution by adding an argument within geom_histogram(). There
are two options. First, change the number of bins:

base_plot +
geom_histogram(bins = 10)

4

0

250

500

750

1000

2.5 5.0 7.5 10.0
imdb_score

co
un

t

This will adjust the number of bins into which the data are sorted. Alternatively, change the bin width,
relative to the scale of the x axis:

base_plot +
geom_histogram(binwidth = 0.25)

5

0

100

200

300

400

2.5 5.0 7.5
imdb_score

co
un

t

This will adjust the width of the bins. Practice varying the number of bins or bin width until you fnd one
that you like best.

Change the Color of the Bars

The default in ggplot2 is grayscale, but you aren’t limited to that! For color names, check out Wei’s (2021)
R Color Cheat Sheet.

base_plot +
geom_histogram(binwidth = .25, fill = "blue")

6

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

0

100

200

300

400

2.5 5.0 7.5
imdb_score

co
un

t

Note that the argument fill = "blue" will make both the bars and their borders blue. However, you may
want to make the bars and their borders diferent colors for emphasis.

base_plot +
geom_histogram(binwidth = .25, fill = "blue", color = "white")

7

0

100

200

300

400

2.5 5.0 7.5
imdb_score

co
un

t

Now the individual bars “pop” a bit more because of the diferent border color.

Finally, try adding a hex code instead of a color name and save the plot as hist_base. One resource for
hexcodes is htmlcolorcodes.com.

hist_base <- base_plot +
geom_histogram(binwidth = .25, fill = "#0099F8", color = "white")

hist_base

8

https://htmlcolorcodes.com/

0

100

200

300

400

2.5 5.0 7.5
imdb_score

co
un

t

Change the Axis Limits

Sometimes you will want to modify the limits of the x axis and/or y axis. This is a somewhat imprecise
process for histograms, but the following example shows how to accomplish this. Keep in mind that the
number/width of bins will contribute to how R organizes the x axis. In this example, you will set the lower
limit of the x axis to NA, which tells R to set the lower limit according to the data. However, you will set
the lower limit of y to 0. Save this plot as hist_limits.

hist_limits <- hist_base +
xlim(NA, 10) +
ylim(0, 400)

hist_limits

9

0

100

200

300

400

2.5 5.0 7.5 10.0
imdb_score

co
un

t

Add a Main Title

No graph is complete without a title! A quick way to add a title is to use the ggtitle() function. Save the
plot to hist_title.

hist_title <- hist_limits +
ggtitle("Frequency of IMDB Average Ratings (1-10) for Netflix Movies, 2019")

hist_title

10

0

100

200

300

400

2.5 5.0 7.5 10.0
imdb_score

co
un

t
Frequency of IMDB Average Ratings (1−10) for Netflix Movies, 2019

Change the X and Y Axis Labels

The default in ggplot2 is to use the variable names as x and y axis labels. Use the labs() function to
change these:

hist_title +
labs(x = "Rating",

y = "Number of Movies")

11

0

100

200

300

400

2.5 5.0 7.5 10.0
Rating

N
um

be
r

of
 M

ov
ie

s
Frequency of IMDB Average Ratings (1−10) for Netflix Movies, 2019

Remove X and Y Axis Labels

If you have already used ggtitle() in a base plot but want to modify the title, there is no need to create
a new base plot. Simply override the title with a new title using the labs function. With a bit of tweaking
to the title, you can remove the now-redundant x and y axis labels. Accomplish this by specifying the
element_blank() function. Save this plot as hist_title_revised.

hist_title_revised <- hist_title +
labs(title = "Most Netflix Movies Score 5+ in IMDB (2019)",

x = element_blank(),
y = element_blank())

Add Annotation

Perhaps you want to add a bit of context to the ratings. You can annotate parts of the plot by specifying
the text and coordinates within the annotate() function. Save the plot to hist_annotated.

hist_annotated <- hist_title_revised +
annotate("text", x = c(2,10), y = c(25,25), label = c("Terrible", "Excellent"))

hist_annotated

12

Terrible Excellent
0

100

200

300

400

2.5 5.0 7.5 10.0

Most Netflix Movies Score 5+ in IMDB (2019)

Explore Themes

The ggplot2 package contains several “themes” that allow for quick alterations to the default plot. Try
modifying the plot you have just created by adding the theme_classic() layer.

hist_annotated +
theme_classic()

13

Terrible Excellent
0

100

200

300

400

2.5 5.0 7.5 10.0

Most Netflix Movies Score 5+ in IMDB (2019)

The main changes you will note are that the background is no longer a gray and white grid, and the axes
are now black. The broader application of themes comes with the function theme(), which can take many
arguments about all sorts of plot elements. See Henry Wang’s ggplot2 Theme Elements Demonstration for
more ideas!

The fnal aspect of this exercise is to tinker with the elements of the plot. Note that you will start with the
hist_annotated plot and remove the background, axis lines, and x-axis ticks manually.

hist_annotated +
theme(

panel.border = element_blank(),
panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
panel.background = element_blank(),
axis.ticks.x = element_blank())

14

https://henrywang.nl/ggplot2-theme-elements-demonstration/

Terrible Excellent
0

100

200

300

400

2.5 5.0 7.5 10.0

Most Netflix Movies Score 5+ in IMDB (2019)

Exercise 2: Create a Scatter Plot

One of the most common plots in data science is the scatter plot, which examines the relationship between
two continuously-measured variables. In this exercise, you will explore whether there is a linear relationship
between the length of a TV show (i.e., runtime) and its TMDB rating.

Prepare the Data

You will limit the analysis to the top four TV show genres (by frequency), which previous work has shown
to be drama, comedy, documentation, and animation. Begin by fltering the titles_short dataset for
these four genres of TV shows and for runtime less than 100. Note that the %in% function fnds all ob-
servations within genre that match the strings specifed in the vector of genres c("drama", "comedy",
"documentation", "animation").

top_show_genres <- titles_short %>%
filter(type == "SHOW" & genre %in% c("drama", "comedy", "documentation", "animation") & runtime < 100)

Create the Basic Plot

From this point on, you will use a shortcut to save some time typing! You can begin a line of ggplot2 code
with the dataset name and the pipe function (%>%) rather than using the argument data = data within the
ggplot() function. This also helps when your plot immediately follows one or more dplyr functions.

Take a look:

15

top_show_genres %>%
ggplot(aes(x = runtime, y = tmdb_score)) +

geom_point()

2.5

5.0

7.5

10.0

0 25 50 75 100
runtime

tm
db

_s
co

re

The plot shows little apparent relationship between the length of TV shows and their TMDB scores. However,
there is an issue with overplotting. You can address this problem with the argument alpha.

Adjust Opacity

To make the points lighter or darker, the argument alpha can be set as a decimal anywhere between 0 and
1, with smaller numbers indicating lighter points. Try adjusting the alpha value and saving the plot as
time_tmdb_scatter1.

time_tmdb_scatter1 <- top_show_genres %>%
ggplot(aes(x = runtime, y = tmdb_score)) +
geom_point(alpha = 0.5)

time_tmdb_scatter1

16

2.5

5.0

7.5

10.0

0 25 50 75 100
runtime

tm
db

_s
co

re

Notice that some of the points are darker, indicating more than one TV show represented by that point.

Add a Regression Line

It can be helpful to see the actual line of best ft for the relationship between x and y. To add a regression
line, create an additional geom layer called geom_smooth; the default will include an error band around the
line.

regression1 <- time_tmdb_scatter1 +
geom_smooth(method = "lm")

regression1

17

2.5

5.0

7.5

10.0

0 25 50 75 100
runtime

tm
db

_s
co

re

Add Color

Although you can make all of the points the same color by passing a color name or hexcode to the argument
fill = within geom_point, it can be useful to assign a variable to the color aesthetic. For example, assign
genre to color:

time_tmdb_scatter2 <- top_show_genres %>%
ggplot(aes(x = runtime, y = tmdb_score, color = genre)) +

geom_point(alpha = 0.5)
time_tmdb_scatter2

18

2.5

5.0

7.5

10.0

0 25 50 75 100
runtime

tm
db

_s
co

re

genre

animation

comedy

documentation

drama

Similarly, you may want to see separate regression lines for each genre depicted on the plot. Note that you
can remove the error bands by specifying the se = FALSE argument.

regression2 <- time_tmdb_scatter2 +
geom_smooth(method = "lm", se = FALSE)

regression2

19

2.5

5.0

7.5

10.0

0 25 50 75 100
runtime

tm
db

_s
co

re

genre

animation

comedy

documentation

drama

Unfortunately, this results in a rather messy plot. Although using color and separate lines may be helpful
for a variable with just two levels, with four levels, it’s too chaotic. Fortunately, an alternative exists: small
multiples!

Create Small Multiples

A great function called facet_wrap() will replicate the plot for each level of a specifed variable. Here, you
will facet_wrap the regression2 plot on the variable genre and remove the redundant legend by passing the
argument legend.position = "none" argument to the theme() function.

regression2 +
facet_wrap(vars(genre)) +
theme(legend.position = "none")

20

documentation drama

animation comedy

0 25 50 75 100 0 25 50 75 100

2.5

5.0

7.5

10.0

2.5

5.0

7.5

10.0

runtime

tm
db

_s
co

re

The results are much cleaner. Practice adjusting the layout and labeling, using the arguments you learned
in the frst lesson.

Exercise 3: Create a Box Plot

You have explored plotting the distribution of a single variable (histogram), two continuous variables (scatter
plot), and two continuous variables in relationship to a categorical variable (scatter plot with color and small
multiples). What if you want to see the diference between two or more levels of a categorical variable in
terms of a continuous variable? For example, you want to know whether median IMDB scores and their
variability difer by movie rating (G, PG, PG-13, etc.). One option is to create a boxplot.

Filter and Plot the Data

First flter out any movies that do not have a rating using !is.na(), then create the plot.

movies %>%
filter(!is.na(rating)) %>%
ggplot(aes(x = rating, y = imdb_score)) +
geom_boxplot()

21

2

4

6

8

G NC−17 PG PG−13 R
rating

im
db

_s
co

re

The default is for boxes to be ordered alphabetically based on the value of x. However, sometimes you will
want them ordered in a specifc way. One option is to convert the x variable to a factor using mutate.

ordered_box <- movies %>%
filter(!is.na(rating)) %>%
mutate(rating = factor(rating, levels=c("G", "PG", "PG-13", "R", "NC-17"))) %>%
ggplot(aes(x = rating, y = imdb_score)) +
geom_boxplot()

ordered_box

22

2

4

6

8

G PG PG−13 R NC−17
rating

im
db

_s
co

re

It appears that IMDB scores are pretty consistent across age certifcation ratings.

Flip Coordinates

Although not evident in the current box plot, sometimes the values on the x axis become overcrowded. One
solution is to fip the coordinates so that the categorical variable appears on the y axis and the continuous
variable on the x axis. Note that you may need to adjust the order of the categorical variable levels by
passing the argument limits = rev to the function scale_x_discrete. This will ensure that the frst
factor appears at the top of the y scale.

ordered_box +
coord_flip() +
scale_x_discrete(limits = rev)

23

NC−17

R

PG−13

PG

G

2 4 6 8
imdb_score

ra
tin

g

Exercise 4: Create a Bar Graph

Unlike a histogram, a bar graph typically represents frequencies, means, or other statistics for various levels
of a categorical variable. In the next exercise, you will identify the top four movie genres (by frequency) and
plot their mean IMDB ratings.

Prepare the Data

To identify the top four most common movie genres and calculate their means, you will use dplyr functions
and save the results to top_genres.

top_genres<- movies %>%
group_by(genre) %>%
summarize(mean = mean(imdb_score, na.rm = TRUE), n = n()) %>%
arrange(desc(n)) %>%
slice(1:4)

top_genres

A tibble: 4 x 3
genre mean n
<chr> <dbl> <int>
1 comedy 6.09 961
2 drama 6.46 882
3 documentation 6.99 414

24

4 thriller 5.94 311

The top four genres are comedy, drama, documentation (i.e., documentary), and thriller. Their means range
from 5.93 (thriller) to 6.99 (documentation). Next, create a bar plot for the means. Note that the aesthetic
mapping includes two variables: x for genre and y for mean. (You can also drop the mapping = prefx to
the aes() function as long as it is the second argument in the ggplot function.)

Create a Bar Plot using geom_col()

ggplot(data = top_genres, aes(x = genre, y = mean)) +
geom_col()

0

2

4

6

comedy documentation drama thriller
genre

m
ea

n

The result is functional but rather boring. Add some visual interest with color.

Add Color to the Bar Plot

The basic method for adding color to the bars is to specify the fill argument within the geom_col()
function:

ggplot(data = top_genres, aes(x = genre, y = mean)) +
geom_col(fill = "pink")

25

0

2

4

6

comedy documentation drama thriller
genre

m
ea

n

However, if you want each bar to be a diferent color, you must map a variable to a third aesthetic: fill:

top_genres_bar <- ggplot(data = top_genres, aes(x = genre, y = mean, fill = genre)) +
geom_col()

top_genres_bar

26

0

2

4

6

comedy documentation drama thriller
genre

m
ea

n

genre

comedy

documentation

drama

thriller

Re-order the X Axis

By default, the x axis is ordered alphabetically by the levels of the categorical variable. You might want to
re-order the bars in some other way, such as by value. To do this, use the x_scale_discrete() function
and save the plot to ordered_genres_bar.

ordered_genres_bar <- top_genres_bar +
scale_x_discrete(limits = c("documentation", "drama", "comedy", "thriller"))

ordered_genres_bar

27

0

2

4

6

documentation drama comedy thriller
genre

m
ea

n

genre

comedy

documentation

drama

thriller

The result shows the genre with the largest mean (comedy) on the far left.

Use a Diferent Color Palette

If the color palette is not to your liking, you can use one of several options within the RColorBrewer packages,
which is installed in base R.

ordered_genres_bar_bold <- ordered_genres_bar +
scale_fill_brewer(palette = "Dark2")

ordered_genres_bar_bold

28

0

2

4

6

documentation drama comedy thriller
genre

m
ea

n

genre

comedy

documentation

drama

thriller

Remove the Legend

Finally, because the legend is somewhat redundant (the x axis labels provide the same information), you can
remove the legend with theme():

ordered_genres_bar_bold +
theme(legend.position = "none")

29

0

2

4

6

documentation drama comedy thriller
genre

m
ea

n

Using ggplot takes practice, and there are endless variations on these and other plots. Challenge yourself
to make small adjustments to the defaults to improve the beauty and efectiveness of your graphics!

References

• Chang, W. (2022). R graphics cookbook. O’Reilly.
• R Color Brewer palettes. (n.d.).
• R Graph Gallery. (n.d.).
• R Studio ggplot Cheatsheet. (n.d.).
• Soero, V. (2022). Netfix TV Shows and Movies.
• Wang, H. (n.d.). ggplot2 Theme Elements Demonstration.
• Wei, Y. (2021). R Color Cheat Sheet.
• Wickham, H., & Grolemund, G. (2017). R for data science. O’Reilly.
• Wilkinson, L. (2005). The grammar of graphics. Springer.

30

https://r-graphics.org/
https://r-graph-gallery.com/38-rcolorbrewers-palettes.html
https://r-graph-gallery.com/index.html
https://www.maths.usyd.edu.au/u/UG/SM/STAT3022/r/current/Misc/data-visualization-2.1.pdf
https://www.kaggle.com/datasets/victorsoeiro/netflix-tv-shows-and-movies
https://henrywang.nl/ggplot2-theme-elements-demonstration/
http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf

	Goal and Learning Outcomes
	The Grammar of Graphics
	The Data: Netflix Movies and TV Shows
	Import the Dataset and Load the Tidyverse
	Exercise 1: Create a Histogram
	Add the Geom Layer
	Change the Appearance of the Distribution
	Change the Color of the Bars
	Change the Axis Limits
	Add a Main Title
	Change the X and Y Axis Labels
	Remove X and Y Axis Labels
	Add Annotation
	Explore Themes

	Exercise 2: Create a Scatter Plot
	Prepare the Data
	Create the Basic Plot
	Adjust Opacity
	Add a Regression Line
	Add Color
	Create Small Multiples

	Exercise 3: Create a Box Plot
	Filter and Plot the Data
	Flip Coordinates

	Exercise 4: Create a Bar Graph
	Prepare the Data

	Create a Bar Plot using geom_col()
	Add Color to the Bar Plot
	Re-order the X Axis
	Use a Different Color Palette
	Remove the Legend

	References

