
Lunch Hour Learning Guide, Session 2, Spring 2025
Importing and Indexing Data in R

Sean Morey Smith

2025-01-22

What You Will Learn

• Understanding data types and data structures
• Importing data from a delimited file (standard csv format, with variations)
• Viewing data
• Indexing (accessing) parts of a data frame

Before Starting

Create a new, self-contained R project in your chosen sub-directory, where you will store your work from
this session. For guidance, see the instructions from Session 1.

Create a sub-directory called “data” in your project directory. Save the experiment_data.csv, no_header.csv,
and data_file.txt files in your “data” directory. They are available in a zip at
https://library.rice.edu/sites/default/files/materials/data.zip

Overview of Data Types and Data Structures

R is flexible and can be used with various types of data. In our sessions, we will just work with tabular data,
which is what you typically find in a spreadsheet.

First, here is some terminology regarding data types, which describe the quality of values in a variable:

• double: numeric data that involve decimal points; AKA “float”
• integer : numeric data that are whole numbers
• character : non-numeric data encoded as alphanumeric characters; AKA “string”
• logical: non-numeric data encoded as FALSE, TRUE, or NA (missing); AKA “Boolean”

Two other data types are complex and raw, but we won’t be using those.

Second, there are a few basic ways that R organizes data into structures. The ones you need to know for
now include:

• vector : a one-dimensional structure consisting of one or more values of the same data type. The
position of each value is meaningful, and the values can have names.

• data frame: a rectangular structure (like a spreadsheet) in which rows generally represent observations
(e.g., respondents, participants, level of analysis) and columns generally represent variables. Data
within each column must be the same data type, but various data types can occur across columns.

• factor : a special type of vector, in which each value represents a level of the associated variable. A
factor is useful for categorical data or grouping variables.

1

https://library.rice.edu/sites/default/files/materials/data.zip

Importing Data

Most of the time (but not always), data files will be in a tabular data format, with rows and columns. Often,
this takes the form of a comma-separated values (csv) file, which you can import or “read in” by using the
read.csv() function.

Note that, in the dataset we’ll be using, we have two categorical variables that we want to treat as factors:
“group” and “major”. We will include an argument in the read.csv() function to treat those variables
(which are encoded as character data) as factors.

scores <- read.csv("data/experiment_data.csv", stringsAsFactors = TRUE)

Note that we have assigned the output of the function read.csv and its arguments (the file name and the
specification to treat character data as factors) to the variable scores, which is a data frame. The default
is to read the first row as column headings.

The scores data frame object appears in the top-right Global Environment pane; it has 20 observations of
9 variables.

Sometimes you will have a data file that is not in a csv format but is in another format (such as a tab-
delimited file). Alternatively, you may have a file that doesn’t have column headings. Here are a few tips
for reading those files:

• Use read.table().
• Specify the nature of the data delimiter (e.g., “\t” for a tab delimiter or “|” for a pipe delimiter) with

sep.
• Specify whether the first row contains column headings or not with header and supply your own with

col.names.

Example of reading data from a tab-delimited file:

alt_data <- read.table("data/data_file.txt", sep = "\t")

Example of reading data from a csv file that has no header row:

alt_data2 <- read.table("data/no_header.csv",
sep = ",",
header = FALSE,
col.names = c("ID", "group", "pretest", "posttest"))

Viewing Data

There are several ways to look at your data: spreadsheet view, structure, first or last few rows, and summary.
Let’s go through each function and its output!

View(scores)

View() shows the data frame as a spreadsheet in a new tab in the scripting area.

str(scores)

2

’data.frame’: 20 obs. of 9 variables:
$ ID : int 1 2 3 4 5 6 7 8 9 10 ...
$ group : Factor w/ 2 levels "Control","Treat": 2 2 2 2 2 2 2 2 2 2 ...
$ pretest : int 60 55 82 74 69 90 88 68 76 80 ...
$ posttest : int 80 72 95 88 83 96 96 86 89 92 ...
$ trait_anxiety: int 2 18 6 10 12 3 2 12 9 1 ...
$ difference : int 20 17 13 14 14 6 8 18 13 12 ...
$ major : Factor w/ 3 levels "H","NS","SS": 3 2 1 3 2 1 3 2 1 3 ...
$ state_anxiety: int 20 26 5 12 6 1 4 10 11 5 ...
$ math_score : int 40 35 90 70 92 97 90 88 86 92 ...

str() shows the structure of the data frame, including each variable, the type of data it contains, and the
first few values.

head(scores)

ID group pretest posttest trait_anxiety difference major state_anxiety
1 1 Treat 60 80 2 20 SS 20
2 2 Treat 55 72 18 17 NS 26
3 3 Treat 82 95 6 13 H 5
4 4 Treat 74 88 10 14 SS 12
5 5 Treat 69 83 12 14 NS 6
6 6 Treat 90 96 3 6 H 1
math_score
1 40
2 35
3 90
4 70
5 92
6 97

head() shows all variables for the first few rows.

tail(scores, n = 3)

ID group pretest posttest trait_anxiety difference major state_anxiety
18 18 Control 62 75 11 13 H 18
19 19 Control 77 87 6 10 SS 11
20 20 Control 81 93 4 12 NS 6
math_score
18 55
19 77
20 84

tail() shows all variables for the last few rows.
Note that we can specify the number of rows we want to see with head() or tail() by using the n =
argument.

summary(scores)

ID group pretest posttest trait_anxiety

3

Min. : 1.00 Control:10 Min. :55.00 Min. :66.00 Min. : 1.00
1st Qu.: 5.75 Treat :10 1st Qu.:63.50 1st Qu.:79.25 1st Qu.: 3.75
Median :10.50 Median :75.00 Median :86.50 Median : 7.50
Mean :10.50 Mean :73.65 Mean :84.80 Mean : 8.00
3rd Qu.:15.25 3rd Qu.:81.25 3rd Qu.:92.25 3rd Qu.:11.25
Max. :20.00 Max. :92.00 Max. :96.00 Max. :18.00
difference major state_anxiety math_score
Min. : 4.00 H :6 Min. : 1.0 Min. :32.00
1st Qu.: 6.75 NS:7 1st Qu.: 5.0 1st Qu.:52.75
Median :12.00 SS:7 Median :11.0 Median :80.50
Mean :11.15 Mean :12.4 Mean :71.60
3rd Qu.:13.25 3rd Qu.:20.0 3rd Qu.:90.00
Max. :20.00 Max. :28.0 Max. :97.00

summary() is a useful function for obtaining some summary statistics (min, max, 1st and 3rd quartiles,
mean, and median) of each numeric variable. Note that this does not provide any measures of variability;
however, you can easily calculate the interquartile range by subtracting Q1 from Q3.
Note that the two factors are summarized as the frequency of observations in each level of the factor.

Determining Variable Type

Although str() will give you the data type of each variable in your data frame, sometimes you might want
to know the type of a specific variable without having to look at all the variables at once. (This is especially
true when you are working with very large datasets with lots of variables.) The function typeof() is useful
for this purpose:

typeof(scores$pretest)

[1] "integer"

typeof(scores$group)

[1] "integer"

The output for scores$pretest is not too surprising; the variable contains integer data because all of the
values are whole numbers. However, why is scores$group integer, when we know that the possible values
are “Treat” and “Control”? This is because R codes those two categories “behind the scenes” as integers (in
this case, 1s and 2s).
If we instead wanted to check whether a variable is a factor or not, we can use the function class(), like
this:

class(scores$pretest)

[1] "integer"

class(scores$group)

[1] "factor"

See that pretest is an integer but group is a factor.
Use typeof() to see what R is doing internally but class() to see how R expects you to interact with the
data.

4

Indexing a Data Frame

Indexing, also known as subsetting or extracting, involves accessing specific pieces of a data frame. Each
value has an index, or a position, in the data frame; the position is represented by its row number and its
column number (or name).

Note that indexing begins with 1 (rather than 0).

To index a specific value, indicate the row number and column number in square brackets, separated by a
comma. For example, index the math score for the first participant. This corresponds to the first row, ninth
column:

scores[1,9]

[1] 40

Practice: Index the trait anxiety score of participant 20. Solution: Note that we have to check which column
contains trait anxiety - column 5.

scores[20, 5]

[1] 4

To index a specific whole row (all variables), specify the row number and leave a blank after the comma.
Perhaps we want all scores for participant 1 (i.e., row 1):

scores[1,]

ID group pretest posttest trait_anxiety difference major state_anxiety
1 1 Treat 60 80 2 20 SS 20
math_score
1 40

Practice: Index all data for participant 2. Then index all data for participant 12. Add an explanatory
comment to each code.

Solution:

scores[2,] # All data for participant 2

ID group pretest posttest trait_anxiety difference major state_anxiety
2 2 Treat 55 72 18 17 NS 26
math_score
2 35

scores[12,] # All data for participant 12

ID group pretest posttest trait_anxiety difference major state_anxiety
12 12 Control 58 70 14 12 H 25
math_score
12 38

To index a specific variable (all rows), leave a blank before the comma and specify the column number.
Example: Index the fourth column, all rows.

5

scores[, 4]

[1] 80 72 95 88 83 96 96 86 89 92 85 70 66 90 96 80 77 75 87 93

Practice: Index all difference scores. Then index all math scores. Add an explanatory comment to each
code.

Solution:

scores[, 6] # All difference scores

[1] 20 17 13 14 14 6 8 18 13 12 6 12 6 5 4 7 13 13 10 12

scores[, 9] # All math scores

[1] 40 35 90 70 92 97 90 88 86 92 46 38 32 90 95 75 60 55 77 84

To index a series of rows, use a colon between the first and last index in the series.
Example: Index the first five rows, all columns.

scores[1:5,]

ID group pretest posttest trait_anxiety difference major state_anxiety
1 1 Treat 60 80 2 20 SS 20
2 2 Treat 55 72 18 17 NS 26
3 3 Treat 82 95 6 13 H 5
4 4 Treat 74 88 10 14 SS 12
5 5 Treat 69 83 12 14 NS 6
math_score
1 40
2 35
3 90
4 70
5 92

We can index a series of columns the same way.
If we want all rows, columns 2 through 4:

scores[, 2:4]

group pretest posttest
1 Treat 60 80
2 Treat 55 72
3 Treat 82 95
4 Treat 74 88
5 Treat 69 83
6 Treat 90 96
7 Treat 88 96
8 Treat 68 86
9 Treat 76 89

6

10 Treat 80 92
11 Control 79 85
12 Control 58 70
13 Control 60 66
14 Control 85 90
15 Control 92 96
16 Control 73 80
17 Control 64 77
18 Control 62 75
19 Control 77 87
20 Control 81 93

As you may have experienced, it can be challenging remembering what number each column corresponds
to; thus, it is often more convenient to refer to columns by the variable name. You can index using variable
name instead. Be sure to wrap it in quotation marks.
For example, the pretest scores for the first ten participants:

scores[1:10, "pretest"]

[1] 60 55 82 74 69 90 88 68 76 80

For multiple columns by name, use the concatenate (c()) function to gather the variable names together.
For example, the “pretest” and “posttest” scores of the 11th through 20th participants:

scores[11:20, c("pretest", "posttest")]

pretest posttest
11 79 85
12 58 70
13 60 66
14 85 90
15 92 96
16 73 80
17 64 77
18 62 75
19 77 87
20 81 93

Alternatively, you can use dollar sign notation to index a column:

scores$pretest[1:10]

[1] 60 55 82 74 69 90 88 68 76 80

This will return the first 10 rows of pretest scores.

Indexing by Citeria

Remember the logical operators: “==”, “>=”, “<=”, “!=”, “&”, “|”? These can be used to index by specific
criteria.
Example: Find all rows that have a pretest score of greater than or equal to 70:

7

scores[scores$pretest >= 70,]

ID group pretest posttest trait_anxiety difference major state_anxiety
3 3 Treat 82 95 6 13 H 5
4 4 Treat 74 88 10 14 SS 12
6 6 Treat 90 96 3 6 H 1
7 7 Treat 88 96 2 8 SS 4
9 9 Treat 76 89 9 13 H 11
10 10 Treat 80 92 1 12 SS 5
11 11 Control 79 85 4 6 NS 20
14 14 Control 85 90 6 5 NS 2
15 15 Control 92 96 2 4 H 3
16 16 Control 73 80 9 7 SS 15
19 19 Control 77 87 6 10 SS 11
20 20 Control 81 93 4 12 NS 6
math_score
3 90
4 70
6 97
7 90
9 86
10 92
11 46
14 90
15 95
16 75
19 77
20 84

Practice: Index all treatment group participants with trait anxiety scores < 10. Solution: We have to use
a logical operator (&) for this one!

scores[(scores$group == "Treat") & (scores$trait_anxiety < 10),]

ID group pretest posttest trait_anxiety difference major state_anxiety
1 1 Treat 60 80 2 20 SS 20
3 3 Treat 82 95 6 13 H 5
6 6 Treat 90 96 3 6 H 1
7 7 Treat 88 96 2 8 SS 4
9 9 Treat 76 89 9 13 H 11
10 10 Treat 80 92 1 12 SS 5
math_score
1 40
3 90
6 97
7 90
9 86
10 92

The use of & allows you to specify two or more criteria.

Use not equals - with the exclamation point - to index all values except the one(s) specified.
Example: We want all participants with a “posttest” score that was not 93.

8

scores[scores$posttest != 93,]

ID group pretest posttest trait_anxiety difference major state_anxiety
1 1 Treat 60 80 2 20 SS 20
2 2 Treat 55 72 18 17 NS 26
3 3 Treat 82 95 6 13 H 5
4 4 Treat 74 88 10 14 SS 12
5 5 Treat 69 83 12 14 NS 6
6 6 Treat 90 96 3 6 H 1
7 7 Treat 88 96 2 8 SS 4
8 8 Treat 68 86 12 18 NS 10
9 9 Treat 76 89 9 13 H 11
10 10 Treat 80 92 1 12 SS 5
11 11 Control 79 85 4 6 NS 20
12 12 Control 58 70 14 12 H 25
13 13 Control 60 66 18 6 SS 28
14 14 Control 85 90 6 5 NS 2
15 15 Control 92 96 2 4 H 3
16 16 Control 73 80 9 7 SS 15
17 17 Control 64 77 11 13 NS 20
18 18 Control 62 75 11 13 H 18
19 19 Control 77 87 6 10 SS 11
math_score
1 40
2 35
3 90
4 70
5 92
6 97
7 90
8 88
9 86
10 92
11 46
12 38
13 32
14 90
15 95
16 75
17 60
18 55
19 77

If the criterion is a character data type, specify it in quotation marks.
Example - Obtain all data for “H” (Humanities) majors:

scores[scores$major == "H",]

ID group pretest posttest trait_anxiety difference major state_anxiety
3 3 Treat 82 95 6 13 H 5
6 6 Treat 90 96 3 6 H 1
9 9 Treat 76 89 9 13 H 11

9

12 12 Control 58 70 14 12 H 25
15 15 Control 92 96 2 4 H 3
18 18 Control 62 75 11 13 H 18
math_score
3 90
6 97
9 86
12 38
15 95
18 55

If the criterion involves more than one value, use %in% and c().
Example: Obtain all data for both “SS” (Social Science) and “NS” (Natural Science) majors:

scores[scores$major %in% c("SS", "NS"),]

ID group pretest posttest trait_anxiety difference major state_anxiety
1 1 Treat 60 80 2 20 SS 20
2 2 Treat 55 72 18 17 NS 26
4 4 Treat 74 88 10 14 SS 12
5 5 Treat 69 83 12 14 NS 6
7 7 Treat 88 96 2 8 SS 4
8 8 Treat 68 86 12 18 NS 10
10 10 Treat 80 92 1 12 SS 5
11 11 Control 79 85 4 6 NS 20
13 13 Control 60 66 18 6 SS 28
14 14 Control 85 90 6 5 NS 2
16 16 Control 73 80 9 7 SS 15
17 17 Control 64 77 11 13 NS 20
19 19 Control 77 87 6 10 SS 11
20 20 Control 81 93 4 12 NS 6
math_score
1 40
2 35
4 70
5 92
7 90
8 88
10 92
11 46
13 32
14 90
16 75
17 60
19 77
20 84

Bonus practice:

1. Develop a question about this dataset that you can answer by indexing.
2. Write your question as a comment above your code.
3. Create an index to answer the question.
4. Write the answer to your question as a comment below your code.

10

	What You Will Learn
	Before Starting
	Overview of Data Types and Data Structures
	Importing Data
	Viewing Data
	Determining Variable Type
	Indexing a Data Frame
	Indexing by Citeria

	Bonus practice:

