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Before Starting

Create a new, self-contained R project where you will store your work from this session. For guidance, see
the instructions from Session 1.

R Refresher/Quiz

Before starting the lesson, refresh your knowledge on some key concepts from the introductory lessons, which
you will need as you advance your knowledge:

1. What function do you call to install a package?

• install.packages() with the name of the package in quotation marks

2. What function do you call to load a package?

• library() with no quotation marks around the name of the package

3. How do you get help on a function?

• help() or ?help

4. What are two main differences between a vector and a data frame?

• A vector is one-dimensional and contains a single data type, whereas a data frame is two dimen-
sional and can contain more than one data type.

5. What function do you call to look at the structure of an object?

• str()

Session 6: Wrangling Data in R with dplyr - Part 1

What You Will Learn

• Arrange data based on a variable
• Select and examine variables
• Filter a data set based on a variable
• Count observations
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Scenario: Graduate Admissions Investigation

You have been contracted to assist your school with an evaluation of their recruitment and admissions
practices. For the past year, the school has been making an effort to recruit and admit men and women
more equitably, particularly in areas where one group or the other has been traditionally underrepresented.

After a year, the data are in, and your job is to determine whether the efforts have resulted in greater equity
among candidates identifying as men and women.

For this scenario, you will use the UCBAdmissions dataset that “lives” in R. This dataset contains aggregated
data on applicants to the UC Berkeley graduate school for the six largest departments in 1973.

Caveat: These data are purely for illustration purposes, and you will note that the variable Gender was
coded as binary, which is an outdated practice. Although you will use the dataset as-is, be aware of social
issues around classification of sex and gender and the limitations of omitting other gender options, such as
non-binary.

Load the Dataset and Examine Its Structure

To get started, load the tidyverse package from your library, look at the dataset by inputting its name,
then call the function glimpse() on UCBAdmissions:

library(tidyverse)

## -- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
## v dplyr 1.1.4 v readr 2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.0 v tibble 3.2.1
## v lubridate 1.9.3 v tidyr 1.3.1
## v purrr 1.0.2
## -- Conflicts ------------------------------------------ tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

UCBAdmissions

## , , Dept = A
##
## Gender
## Admit Male Female
## Admitted 512 89
## Rejected 313 19
##
## , , Dept = B
##
## Gender
## Admit Male Female
## Admitted 353 17
## Rejected 207 8
##
## , , Dept = C
##
## Gender
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## Admit Male Female
## Admitted 120 202
## Rejected 205 391
##
## , , Dept = D
##
## Gender
## Admit Male Female
## Admitted 138 131
## Rejected 279 244
##
## , , Dept = E
##
## Gender
## Admit Male Female
## Admitted 53 94
## Rejected 138 299
##
## , , Dept = F
##
## Gender
## Admit Male Female
## Admitted 22 24
## Rejected 351 317

glimpse(UCBAdmissions)

## ’table’ num [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
## - attr(*, "dimnames")=List of 3
## ..$ Admit : chr [1:2] "Admitted" "Rejected"
## ..$ Gender: chr [1:2] "Male" "Female"
## ..$ Dept : chr [1:6] "A" "B" "C" "D" ...

First, notice that the dataset looks like a table. There are six cross-tabs (one per Dept (department)) with
frequency data for combinations of gender and admission status. In other words, there are three variables.

Second, the output of glimpse() shows us the structure of the data, similar to the function str().

Sometimes, you just need to know the class of a dataset to determine if it is already in the desired format
or not.

class(UCBAdmissions)

## [1] "table"

As we saw with the glimpse() function, the output shows that UCBAdmissions is a table rather than a
tidy data frame. You need to convert the table to a data frame using the function as.data.frame(), which
coerces another object to a data frame object.

Assign this new data frame to an object called admissions and examine the structure of the object with
glimpse():
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# remember the parentheses force the assignment to print
(admissions <- as.data.frame(UCBAdmissions))

## Admit Gender Dept Freq
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207
## 7 Admitted Female B 17
## 8 Rejected Female B 8
## 9 Admitted Male C 120
## 10 Rejected Male C 205
## 11 Admitted Female C 202
## 12 Rejected Female C 391
## 13 Admitted Male D 138
## 14 Rejected Male D 279
## 15 Admitted Female D 131
## 16 Rejected Female D 244
## 17 Admitted Male E 53
## 18 Rejected Male E 138
## 19 Admitted Female E 94
## 20 Rejected Female E 299
## 21 Admitted Male F 22
## 22 Rejected Male F 351
## 23 Admitted Female F 24
## 24 Rejected Female F 317

glimpse(admissions)

## Rows: 24
## Columns: 4
## $ Admit <fct> Admitted, Rejected, Admitted, Rejected, Admitted, Rejected, Adm~
## $ Gender <fct> Male, Male, Female, Female, Male, Male, Female, Female, Male, M~
## $ Dept <fct> A, A, A, A, B, B, B, B, C, C, C, C, D, D, D, D, E, E, E, E, F, ~
## $ Freq <dbl> 512, 313, 89, 19, 353, 207, 17, 8, 120, 205, 202, 391, 138, 279~

Now the data are in the right format! Each row represents a combination of Dept, Gender, and Admit
subgroup, and Freq (frequency) is the number of people in that subgroup.

For example, the first four rows are Department A, with row 1 being the number of male applicants who were
admitted, row 2 the number of male applicants who were rejected, row 3 the number of female applicants
who were admitted, etc. The three variables are factors.

Tibbles

Small datasets such as this one are easy to see in their entirety when we assign them to a data frame object.
However, larger datasets are more unwieldy.

An alternative is to create a tidyverse object called a tibble. A tibble is a special data frame that works
well with various tidyverse functions. The function as_tibble converts a dataset or data frame to a tibble.
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Convert the admissions data frame to a tibble. One of the default arguments for this function is colnames
= TRUE, which indicates that the column names of the original object will become the column names of the
tibble. This can be changed to FALSE if, for example, you are converting a table with no column names to
a tibble.

(ad_tib <- as_tibble(admissions, colnames = TRUE))

## # A tibble: 24 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207
## 7 Admitted Female B 17
## 8 Rejected Female B 8
## 9 Admitted Male C 120
## 10 Rejected Male C 205
## # i 14 more rows

Notice that the tibble only displays the first 10 rows and as many columns as can fit on the screen, labeled
with the type of data the columns contain.
Sometimes, however, you want to see additional rows. R gives you a hint about how to do this: print(n =
...) to see more rows. Try that out!

print(ad_tib, n = 20)

## # A tibble: 24 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207
## 7 Admitted Female B 17
## 8 Rejected Female B 8
## 9 Admitted Male C 120
## 10 Rejected Male C 205
## 11 Admitted Female C 202
## 12 Rejected Female C 391
## 13 Admitted Male D 138
## 14 Rejected Male D 279
## 15 Admitted Female D 131
## 16 Rejected Female D 244
## 17 Admitted Male E 53
## 18 Rejected Male E 138
## 19 Admitted Female E 94
## 20 Rejected Female E 299
## # i 4 more rows
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This displays 20 rows of data!

Find and Edit Commands in the Console

As a rule of thumb, it is best to work in the script editor rather than in the command console. However,
occasionally you might want to try something out quickly without a plan to save it in the script. For example,
you may want to practice changing the values of various arguments or call help on several functions.

For these purposes, you can use the command console rather than inputting commands in the script editor
and then having to delete them. A shortcut to find previous commands that have been run is to use the up
or down arrow to scroll through those commands in the console.

Practice by using the up arrow on your keyboard to scroll to the previous command print(ad_tib, n =
20). Edit this command so that n = Inf (infinity):

print(ad_tib, n = Inf)

## # A tibble: 24 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Rejected Male B 207
## 7 Admitted Female B 17
## 8 Rejected Female B 8
## 9 Admitted Male C 120
## 10 Rejected Male C 205
## 11 Admitted Female C 202
## 12 Rejected Female C 391
## 13 Admitted Male D 138
## 14 Rejected Male D 279
## 15 Admitted Female D 131
## 16 Rejected Female D 244
## 17 Admitted Male E 53
## 18 Rejected Male E 138
## 19 Admitted Female E 94
## 20 Rejected Female E 299
## 21 Admitted Male F 22
## 22 Rejected Male F 351
## 23 Admitted Female F 24
## 24 Rejected Female F 317

The output is the entire tibble because we told print() we wanted infinite rows.

More about Tibbles

In the current tibble, the rows represent group-level observations, and the frequency indicates the number
of people in each group. In other tibbles you will encounter, each row will represent a person. In either case,
tibbles prefer “tidy” data, which means that each row represents a single observation, each cell represents a
single value, and each column represents a single variable.
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Caveat: There are pros and cons to this approach. A major pro is that the format makes the data compatible
with various tidyverse functions. A downside comes when variables represent repeated measures, such as
pre and post test scores for the same person. Some types of statistical analyses, such as paired t tests, are
more easily calculated when the two measures appear on the same row as separate variables, rather than
two separate rows representing two observations for the same variable. You’ll just need to think through the
analyses you will perform before determining how to organize your data.

Nonetheless, all of the transformations in this lesson will work with the tidy format of the tibble.

Overview of dplyr

Now you are ready to transform your dataset! You will use dplyr, a package in the tidyverse for data
transformation. The name dplyr is a mash-up of “data pliers” (like the physical tool) but ending with “r”
as a nod to the R language. The dplyr package uses “pipes” to call one or more functions (called “verbs”)
in order on a data frame or tibble (called a “pipeline”).

The pipe operator is %>%; make sure you do not put spaces between these characters.

Tip: It’s good practice to start a new line after each pipe, so it’s easy to see the steps of the pipe sequence.
Putting it at the beginning of lines will cause errors.

You can build a pipe with numerous verbs, each telling R how to transform the data in a step-by-step
process. Note that this does not affect the original tibble, so if you want to save the output of a pipe, you
will need to assign it to a variable.

Arranging with arrange()

The verb arrange() is for arranging or sorting data based on one or more variables. The default is for R
to arrange rows in ascending order based on the alphanumeric value of the variable (column) specified, but
you can add an argument desc() to arrange data in descending order.

Arranging Data in Ascending Order

Let’s return to the graduate admissions investigation scenario. Looking at the entire dataset, it appears at
first glance that there are gender-related differences in the patterns of admission and rejection. Your task is
to be more precise with your analysis of these differences.

As a starting point, you decide to look first at the data for applicants who were admitted by arranging the
data so that “Admitted” rows appear before “Rejected” rows. From looking at the dataset previously, you
already know that there are 12 rows for admitted applicants, so you specify that R should return 12 rows.

Furthermore, because A (for Admitted) comes before R (for Rejected), you can use the default, which is to
arrange rows in alphabetical order based on the values of the variable.

ad_tib %>%
arrange(Admit) %>%
print(n = 12)

## # A tibble: 24 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Admitted Female A 89
## 3 Admitted Male B 353
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## 4 Admitted Female B 17
## 5 Admitted Male C 120
## 6 Admitted Female C 202
## 7 Admitted Male D 138
## 8 Admitted Female D 131
## 9 Admitted Male E 53
## 10 Admitted Female E 94
## 11 Admitted Male F 22
## 12 Admitted Female F 24
## # i 12 more rows

The output is the first 12 rows of the tibble: all admitted applicants. Note, however, that these functions
do not affect the ad_tib tibble. All of the rows are still in the tibble in their original order; only the output
is affected (unless we save the result to a new tibble).

Arranging Data Based on Two Variables

Now you want to do a quick comparison of male and female applicants who were admitted vs. rejected in each
department. You can specify that you want to arrange first by department (Dept) and then by admission
status (Admit).

Note that the order of variables in the argument matters: specify what to sort first and second, in that order.
Also note that you want all rows, so you call print(n = Inf) again.

ad_tib %>%
arrange(Dept, Admit) %>%
print(n = Inf)

## # A tibble: 24 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Admitted Female A 89
## 3 Rejected Male A 313
## 4 Rejected Female A 19
## 5 Admitted Male B 353
## 6 Admitted Female B 17
## 7 Rejected Male B 207
## 8 Rejected Female B 8
## 9 Admitted Male C 120
## 10 Admitted Female C 202
## 11 Rejected Male C 205
## 12 Rejected Female C 391
## 13 Admitted Male D 138
## 14 Admitted Female D 131
## 15 Rejected Male D 279
## 16 Rejected Female D 244
## 17 Admitted Male E 53
## 18 Admitted Female E 94
## 19 Rejected Male E 138
## 20 Rejected Female E 299
## 21 Admitted Male F 22
## 22 Admitted Female F 24
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## 23 Rejected Male F 351
## 24 Rejected Female F 317

The tibble groups by department first (“A” through “F”, alphabetically) and then by Admit status, in this
case, “Admitted” first and then “Rejected”. Keep in mind that each of these tibbles is the same data frame,
just arranged in different ways.

Arranging Data in Descending Order

Call the following and view the result.
Tip: Be sure to include both parentheses at the end of the script to avoid an error!

ad_tib %>%
arrange(desc(Gender))

## # A tibble: 24 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Female A 89
## 2 Rejected Female A 19
## 3 Admitted Female B 17
## 4 Rejected Female B 8
## 5 Admitted Female C 202
## 6 Rejected Female C 391
## 7 Admitted Female D 131
## 8 Rejected Female D 244
## 9 Admitted Female E 94
## 10 Rejected Female E 299
## # i 14 more rows

We’ve had R sort the data by Gender – the counts of all “Female” applicants appear first. But why do
“Females” appear first when you included the argument desc(Gender)? Shouldn’t males appear first, since
you told R to sort in descending (i.e., reverse alphabetical) order?
There must be something in the variable Gender that is responsible for how the data are arranged. Look at
the structure of the tibble again for a clue.

Troubleshooting

str(ad_tib)

## tibble [24 x 4] (S3: tbl_df/tbl/data.frame)
## $ Admit : Factor w/ 2 levels "Admitted","Rejected": 1 2 1 2 1 2 1 2 1 2 ...
## $ Gender: Factor w/ 2 levels "Male","Female": 1 1 2 2 1 1 2 2 1 1 ...
## $ Dept : Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 2 2 2 2 3 3 ...
## $ Freq : num [1:24] 512 313 89 19 353 207 17 8 120 205 ...

str() reminds us that Gender is a factor that was coded as 1 for “Male” and 2 for “Female”. Thus, descending
order returns “Females” first, as this level has a larger coded number than “Males”. For factors, the order
will be based on the levels’ coded values, not on their alphabetical value. Always be sure to review the
coding system for your data, as this determines how R interprets numbers assigned to categorical data.
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R Tip: arrange()

Keep in mind that arrange() sorts the data based on the selected variable(s). However, the order of the
variables (columns) in the tibble does not change. If you have a big tibble with many variables, you might
want to just look at certain variables, and you might want to specify the order in which these variables
(columns) appear in the tibble. You can accomplish both of these tasks with the next verb: select().

Selecting Variables to Display with select()

Note: This segment has been omitted from the in-person session, as the select() function was covered in
previous Lunch HouR lessons. However, it is helpful to review this material!

You decide to narrow your focus for a moment to look at Gender, Dept (department), and Freq (frequency),
omitting Admit. The order of variables specified in the argument determines their order in the resulting
tibble.

ad_tib %>%
select(Gender, Dept, Freq)

## # A tibble: 24 x 3
## Gender Dept Freq
## <fct> <fct> <dbl>
## 1 Male A 512
## 2 Male A 313
## 3 Female A 89
## 4 Female A 19
## 5 Male B 353
## 6 Male B 207
## 7 Female B 17
## 8 Female B 8
## 9 Male C 120
## 10 Male C 205
## # i 14 more rows

The output is a tighter tibble with only the variables selected. Note, however, that this function did not
collapse any rows: “Admitted” and “Rejected” are still shown as separate rows (simply not labeled). With the
current dataset, select() is not really necessary, but for large datasets with dozens of variables, select()
is extremely handy for zooming in on just those variables of interest.

Omitting Variables to Display

If you want to omit one or more variables (instead of choosing which to include), you can use select() and
specify the variables to omit with a minus sign (-) before the variable name. For example, you just want to
see Gender and Freq by excluding Admit and Dept:

ad_tib %>%
select(-Admit, -Dept)

## # A tibble: 24 x 2
## Gender Freq
## <fct> <dbl>
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## 1 Male 512
## 2 Male 313
## 3 Female 89
## 4 Female 19
## 5 Male 353
## 6 Male 207
## 7 Female 17
## 8 Female 8
## 9 Male 120
## 10 Male 205
## # i 14 more rows

Now, only the two desired variables are displayed. Again, all original rows are preserved; only the columns
are omitted.

Selecting a Series of Variables to Display

If you want to select a series of consecutive variables (columns), you can simply use a colon between the
first and last variable inside select(). Note that if you specify the last variable in the sequence first, the
variables will appear in reverse order.
Here is an example: You want all variables from Gender through Freq, but you want Freq to appear first.

ad_tib %>%
select(Freq:Gender)

## # A tibble: 24 x 3
## Freq Dept Gender
## <dbl> <fct> <fct>
## 1 512 A Male
## 2 313 A Male
## 3 89 A Female
## 4 19 A Female
## 5 353 B Male
## 6 207 B Male
## 7 17 B Female
## 8 8 B Female
## 9 120 C Male
## 10 205 C Male
## # i 14 more rows

As before, all rows are preserved; however, Admit does not appear in the tibble because it was not in the
range of variables specified in the argument.
Practice: Selecting Variables and Arranging Data
Try creating a pipeline by calling two functions in the same script!
Back to the scenario: Your boss asks you to generate a table with all of the “Rejected” rows shown at the
top; to protect departments’ privacy, the table should not specify which department each row is associated
with. Thus, you need a table that omits Dept.
Solution: In this pipeline, select all variables except Dept by using select(-Dept). That removes Dept from
the tibble, protecting the departments’ identities. Then you arrange the rows in descending order based on
Admit, since “Rejected” as coded as 2 and “Admitted” is coded as 1: arrange(desc(Admit)). Finally, you
print the first 12 rows, which correspond to the rows for the rejected groups: print(n = 12).
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ad_tib %>%
select(-Dept) %>%
arrange(desc(Admit)) %>%
print(n = 12)

## # A tibble: 24 x 3
## Admit Gender Freq
## <fct> <fct> <dbl>
## 1 Rejected Male 313
## 2 Rejected Female 19
## 3 Rejected Male 207
## 4 Rejected Female 8
## 5 Rejected Male 205
## 6 Rejected Female 391
## 7 Rejected Male 279
## 8 Rejected Female 244
## 9 Rejected Male 138
## 10 Rejected Female 299
## 11 Rejected Male 351
## 12 Rejected Female 317
## # i 12 more rows

R Tip: Helper Functions

dplyr has additional functions called “helpers” that operate inside the verb select(). Take a look at a few
for future reference:

• starts_with("string") selects any variables that start with the string specified in parentheses. Be
sure to include quotation marks around the string!

• ends_with("string") selects any variables that end with the string.
• contains("string") selects any variables that contain the string.
• everything() selects all variables and can be used with other variables to rearrange the order of

variables in a tibble. This helper is handy if you want to move just a few columns to the far left of the
tibble but leave the other columns where they appear.

Practice: Helper Functions

Review the following command and guess what the output will be. Then check the output!

ad_tib %>%
select(Dept, everything()) %>%
arrange(Dept)

## # A tibble: 24 x 4
## Dept Admit Gender Freq
## <fct> <fct> <fct> <dbl>
## 1 A Admitted Male 512
## 2 A Rejected Male 313
## 3 A Admitted Female 89
## 4 A Rejected Female 19
## 5 B Admitted Male 353
## 6 B Rejected Male 207
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## 7 B Admitted Female 17
## 8 B Rejected Female 8
## 9 C Admitted Male 120
## 10 C Rejected Male 205
## # i 14 more rows

Solution: Did you guess that the tibble would include all variables but that Dept would appear first? Did
you also guess that the rows would be arranged by Dept as specified by the second verb?

Counting with count()

Now you are ready to transform your data further by collapsing some rows. The term “collapsing” means
combining two or more rows and ignoring membership within a particular group. For instance, if you collapse
across gender, you group “Male” and “Female” rows together rather than treating them separately. This
point will become clearer in a moment.

To collapse our admissions data, we can use the verb count(), which counts the number of rows within each
value of a specified variable (column). Take a look at how this operates:

ad_tib %>%
count()

## # A tibble: 1 x 1
## n
## <int>
## 1 24

If you call count() without an argument, R simply counts the number of rows in the dataset. Since you
already know that there are 24 rows, this isn’t very helpful. However, when count() is used with various
arguments and in conjunction with other verbs, it becomes extremely useful. But it’s important to know
that the basic purpose of count() is counting rows.

Performing a Weighted Count

Add an argument to count(): wt = variable_name. This will weight the count by the variable specified,
which translates to summing all of the values in that column.

ad_tib %>%
count(wt = Freq)

## # A tibble: 1 x 1
## n
## <dbl>
## 1 4526

We’ve had R weight each row by the value of Freq, or the frequency of applicants for that row. The output
is the sum of all values, i.e., the total number of applicants: 4,526.
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Counting Based on a Variable

There is one more piece to learn before putting everything together and using the full power of count().
If you add a variable name as an argument in count(), you’ll get an output broken down for each of the
variable’s values. For example:

ad_tib %>%
count(Dept)

## # A tibble: 6 x 2
## Dept n
## <fct> <int>
## 1 A 4
## 2 B 4
## 3 C 4
## 4 D 4
## 5 E 4
## 6 F 4

This counts the number of rows associated with each value of Dept (each department). The output shows
that there are 6 departments and that each department has 4 rows of data.

When might this be useful? One application is for checking where missing data are. For example, if you
have a large dataset with hundreds of rows and you expect each level of a variable to have an equal number
of rows, you can call count() on that variable to check whether your expectations are met or not. Here, if
you expected each department to provide four rows of data and one department has only three, then you
will need to follow up with that department to locate the missing data.

Another time when this function can be useful is when the rows in the dataset represent person-level data,
meaning measurements from individual people. You can call count() on a variable to determine how many
people have each possible value for that measure. (Note: You saw this application in a previous lesson when
you counted the number of Netflix movies within each rating category.)

Performing a Weighted Count Based on a Variable

Now it’s time to put everything together. Your boss asks you to calculate the total number of applicants for
each department.

ad_tib %>%
count(Dept, wt = Freq, sort = TRUE)

## # A tibble: 6 x 2
## Dept n
## <fct> <dbl>
## 1 A 933
## 2 C 918
## 3 D 792
## 4 F 714
## 5 B 585
## 6 E 584

R collapses the data across the variables that were not specified (Gender and Admit), which means that all
of the rows for each department are treated together. R then weights each level of Dept by the value of
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Freq for each row associated with that department. The count, shown in the tibble as n, is the sum of those
weights. Finally, sort = TRUE sorts the results by the n column value, in descending order.

The output is a 6 x 2 tibble showing the total number of applicants for each department. The results indicate
that department A had the largest number of applicants, followed closely by department C. The smallest
numbers of applicants were in departments E and B.

Practice: Perform a Weighted Count

When you have frequency data such as those in this dataset, calling a weighted count on each categorical
variable (factor) is a great way to determine how many observations are in the different subgroups in your
data.

Try obtaining the frequencies for the other two variables.

1. Find the total number of male and female applicants.
2. Find the total number of admitted and rejected applicants.

Solution:

ad_tib %>%
count(Gender, wt = Freq, sort = TRUE)

## # A tibble: 2 x 2
## Gender n
## <fct> <dbl>
## 1 Male 2691
## 2 Female 1835

The first result is that there were 2,691 male applicants and 1,835 female, or approximately a 3:2 ratio of
men to women.

ad_tib %>%
count(Admit, wt = Freq, sort = TRUE)

## # A tibble: 2 x 2
## Admit n
## <fct> <dbl>
## 1 Rejected 2771
## 2 Admitted 1755

The second result is that there were 2,771 applicants rejected and 1,755 applicants admitted. This is also
approximately a 3:2 ratio of rejected to admitted applicants.

Filtering with filter()

In the introductory R lesson, we used indexing ([] and $) to filter the data according to certain criteria.
Within the tidyverse, you can use filter() to achieve the same end, with the added benefit of being able
to filter within a longer pipeline.

As with any index, you can use conditionals such as >, <, and == to provide the criteria you want to filter by.
Note that when you filter using a character (string) variable, quotation marks are required; however, unlike
indexing in base R, you can use the column names in the filter directly.
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Here is an example: As you are working on your investigation, the chair of department A calls your office
and wants to know their department’s pattern of admissions and rejections. You can simply filter the data
to obtain only rows for department A.

ad_tib %>%
filter(Dept == "A")

## # A tibble: 4 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19

By eyeballing the rows for this department, you can see that far more men than women applied, but the
rate of admission was higher for women than for men.

Filtering on Multiple Variables

You can use filter() with multiple variables, and you may find that the code is simpler than the indexes
you crafted in base R.

Look at the call below and see if you can determine what rows will be in the tibble before reviewing the
output.

ad_tib %>%
filter(Admit == "Admitted" & Freq > 100)

## # A tibble: 6 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Admitted Male B 353
## 3 Admitted Male C 120
## 4 Admitted Female C 202
## 5 Admitted Male D 138
## 6 Admitted Female D 131

Did you guess that R would first find all “Admitted” rows and then narrow those down to the rows that
have a frequency of more than 100? The output is a tibble of departments that admitted more than 100
male applicants and/or more than 100 female applicants.

Practice: Filter on Multiple Variables

Use filter() to identify the departments that rejected 100 or more female applicants, then arrange the
results in descending order of frequency. Hint: You’ll need to use filter() with three criteria and include
the desc() argument within arrange().

Solution:

ad_tib %>%
filter(Admit == "Rejected" & Gender == "Female" & Freq >= 100) %>%
arrange(desc(Freq))
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## # A tibble: 4 x 4
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Rejected Female C 391
## 2 Rejected Female F 317
## 3 Rejected Female E 299
## 4 Rejected Female D 244

The results show the departments (C, F, E, and D) that rejected 100 or more female applicants.

Session 7: Wrangling Data in R with dplyr - Part 2

What You Will Learn

• Grouping data based on one or more variables
• Summarizing data based on groups
• Creating new variables (columns)

Load Packages and Data

We’ll continue using the UCBAdmissions data set that we used in Part 1. As a reminder, UCBAdmissions
contains aggregated data on applicants to the UC Berkeley graduate school for the six largest departments
in 1973.

Make sure the tidyverse package is loaded. Then load UCBAdmissions as a tibble named ad_tib:

library(tidyverse)
ad_tib <- as_tibble(as.data.frame(UCBAdmissions), colnames = TRUE)

Grouping Data by a Variable with group_by()

Perhaps the most powerful verb in the dplyr package is group_by(). On its own, it doesn’t do much, but
when combined with other verbs, it is extremely useful.

This verb groups all rows associated with a particular level of a specified variable and treats them as a group.
When you call subsequent functions involving some sort of calculation, such as count(), the calculations
will be performed for the groups of rows created by group_by() rather than for all rows.

First look at the basic group_by() call.

ad_tib %>%
group_by(Dept)

## # A tibble: 24 x 4
## # Groups: Dept [6]
## Admit Gender Dept Freq
## <fct> <fct> <fct> <dbl>
## 1 Admitted Male A 512
## 2 Rejected Male A 313
## 3 Admitted Female A 89
## 4 Rejected Female A 19
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## 5 Admitted Male B 353
## 6 Rejected Male B 207
## 7 Admitted Female B 17
## 8 Rejected Female B 8
## 9 Admitted Male C 120
## 10 Rejected Male C 205
## # i 14 more rows

Note that the output doesn’t look any different from the original tibble ad_tib. That’s because you haven’t
performed any calculations on the rows! However, you will notice under the description of the tibble (in this
case, a 24 x 4 tibble) that dplyr indicates the groups that were formed by the call (in this case, 6 groups
based on Dept).

Combining group_by() with count()

Now let’s look at an example of using group_by() with count(). Remember that count() counts the
number of rows associated with a variable. A weighted count involves weighting each row by the value of
some other variable, such as frequency.

As part of your investigation, you want to determine the number of admitted and rejected applicants for
each department, collapsing across (ignoring) gender. Group the data by Dept and perform a weighted
count of Admit based on Freq, which will calculate the total number of admissions and rejections for each
department.

ad_tib %>%
group_by(Dept) %>%
count(Admit, wt = Freq)

## # A tibble: 12 x 3
## # Groups: Dept [6]
## Dept Admit n
## <fct> <fct> <dbl>
## 1 A Admitted 601
## 2 A Rejected 332
## 3 B Admitted 370
## 4 B Rejected 215
## 5 C Admitted 322
## 6 C Rejected 596
## 7 D Admitted 269
## 8 D Rejected 523
## 9 E Admitted 147
## 10 E Rejected 437
## 11 F Admitted 46
## 12 F Rejected 668

The output includes each department’s total admitted and rejected frequencies. Note that Gender is not
included as a column because we had R collapse across it. The results show that departments A and B admit
far more applicants than they reject, whereas departments C, D, E, and F reject far more than they admit.

Caveat: Be sure to call group_by() in the pipeline before other verbs you want performed on the groups.
You have to create the groups before you can operate on them.

Practice: Combine group_by() with count()
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You are ready to start working on your investigation in earnest. First find the school-wide admission and
rejection numbers for men and women separately. This will involve counting total admissions and total
rejections for men and for women, irrespective of the department that they applied to.

Solution: Group by Gender and call count() on the weighted value of Admit.

ad_tib %>%
group_by(Gender) %>%
count(Admit, wt = Freq)

## # A tibble: 4 x 3
## # Groups: Gender [2]
## Gender Admit n
## <fct> <fct> <dbl>
## 1 Male Admitted 1198
## 2 Male Rejected 1493
## 3 Female Admitted 557
## 4 Female Rejected 1278

The output is a 4x3 tibble. You can see the overall numbers of admitted and rejected male applicants and
admitted and rejected female applicants for the entire school.

One thing that stands out, just by glancing at the data, is that the school-wide admission rates are quite
different for men and women. Men are accepted at a higher rate, overall.

Thinking through group_by()

Let’s take a minute to parse the group_by() function in more depth. When you pass a variable to
group_by(), it identifies all of the rows associated with each level of that variable and groups them to-
gether.

For example, if you call group_by(Gender), all of the rows with the level “Female” for Gender will be
grouped together and all of rows with the level “Male” for Gender will be grouped together. This collapses
the data across Dept and Admit.

Figure 1 below shows all of the rows associated with the “Female” level of Gender. These rows are all
grouped together with the verb group_by().

Grouping by a variable is not the same as collapsing on that variable. To keep this clear, you can think of
the group_by() function as grouping rows with the same level of a variable, for the purpose of performing
calculations separately on each level of the variable.

After grouping by Gender, when you called a weighted count on Admit, count() pulled out the two levels
of Admit and counted the frequency for each of those levels (Figure 2). The result of this call answered the
question, “Among the men, how many applicants were admitted vs. rejected, and among the women, how
many applicants were admitted vs. rejected?”

How you group your variables changes the meaning of the counts and other analyses, so choose your grouping
variable(s) carefully! In Figure 3, we group by Admit and then count the number of men and women within
each of the Admit levels:

ad_tib %>%
group_by(Admit) %>%
count(Gender, wt = Freq)
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Figure 1: All Female Rows in UCBAdmissions, Grouped

Figure 2: How R Parses group_by(Gender) and count(Admit)
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Figure 3: How R Parses group_by(Admit) and count(Gender)

## # A tibble: 4 x 3
## # Groups: Admit [2]
## Admit Gender n
## <fct> <fct> <dbl>
## 1 Admitted Male 1198
## 2 Admitted Female 557
## 3 Rejected Male 1493
## 4 Rejected Female 1278

The actual count() results of this call (n) are identical to those of the previous call! But you will notice
that the output is arranged differently.

This second call answers the question, “Among those admitted, how many were men vs. women, and among
those rejected, how many were men vs. women?”

This difference may not matter for simple counts, but it does matter when you perform calculations, such as
percentages and means, on specific subgroups. The grouping variable determines the denominator of such
calculations, as you will see in a moment.

Practice: Combine group_by() and count()

At this point, your school’s admission team wants to know how many men and women applied to each
department. You create a pipe to answer this question.

Solution:

ad_tib %>%
group_by(Dept) %>%
count(Gender, wt = Freq)

## # A tibble: 12 x 3
## # Groups: Dept [6]
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## Dept Gender n
## <fct> <fct> <dbl>
## 1 A Male 825
## 2 A Female 108
## 3 B Male 560
## 4 B Female 25
## 5 C Male 325
## 6 C Female 593
## 7 D Male 417
## 8 D Female 375
## 9 E Male 191
## 10 E Female 393
## 11 F Male 373
## 12 F Female 341

The output shows that two departments, D and E, had relatively similar numbers of male and female
applicants. In contrast, there was a big difference between the number of male and female applicants in
departments A and B, for example.

Recap

You have conducted several analyses on this dataset with the goal of answering the initial question: how
equitable are the school’s application and admission outcomes in terms of gender? You looked at the
following:

• Unweighted counts with count():

– count(): total number of rows in the dataset
– count(Dept): number of rows for each department

• Weighted counts with count(..., wt - Freq)

– count(wt = Freq): total number of applicants
– count(Dept, wt = Freq): number of applicants in each department
– count(Gender, wt = Freq): number of male and female applicants
– count(Admit, wt = Freq): number of admitted and rejected applicants

• Weighted group counts with group_by() %>% count(..., wt = Freq)

– group_by(Dept) %>% count(Admit, wt = Freq): number of admissions vs. rejections in each
department

– group_by(Gender) %>% count(Admit, wt = Freq): number of admitted vs. rejected applicants
among males vs. females

– group_by(Admit) %>% count(Gender, wt = Freq): number of males vs. females among admit-
ted vs. rejected applicants

– group_by(Dept) %>% count(Gender, wt = Freq): number of males vs. females applying to
each department

Here is a summary of the findings from these analyses:

• The total number of applicants to this school is 4,526.
• Departments A and B have the largest number of applicants.
• The ratio of male to female applicants is approximately 3:2.
• The ratio of rejected to admitted applicants is approximately 3:2.
• School-wide, men have a higher rate of admission than women.
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• Departments A and B are least selective (i.e., higher rates of Admit).
• Departments E and F are most selective.
• Far more men than women apply to Departments A and B.
• Far more women than men apply to Departments C and E.

These are interesting observations. There does appear to be a gender discrepancy at the school level in terms
of applications and admissions, but there are some interesting patterns at play at the departmental level
that need to be investigated.

Next we will drill down into department-level data and calculate some percentages.

Creating a New Variable (Column) with mutate()

So far, we have been working with counts/frequencies. Often, however, we want to look at other calcula-
tions, such as percentages or means. For example, to determine whether men and women have comparable
outcomes, you need to convert frequencies to percentages.

A handy verb function for accomplishing this task is mutate(), which creates a new variable (column) based
on existing variables, using a specified formula. The formula can include other functions, such as sum() or
mean(). The formula for obtaining a percentage for a row involves dividing the row frequency (i.e., the Freq
column in the current dataset) by the sum of all frequencies and then multiplying that number by 100:

Freq / sum(Freq) * 100

Note that if the frequency column were named something else, such as n or count, then you would replace
Freq with that column name.

The format for creating a new variable is mutate(new_variable = formula(existing_variable)). Here
is an example:

ad_tib %>%
mutate(percent = Freq / sum(Freq) * 100) %>%
print(n = Inf)

## # A tibble: 24 x 5
## Admit Gender Dept Freq percent
## <fct> <fct> <fct> <dbl> <dbl>
## 1 Admitted Male A 512 11.3
## 2 Rejected Male A 313 6.92
## 3 Admitted Female A 89 1.97
## 4 Rejected Female A 19 0.420
## 5 Admitted Male B 353 7.80
## 6 Rejected Male B 207 4.57
## 7 Admitted Female B 17 0.376
## 8 Rejected Female B 8 0.177
## 9 Admitted Male C 120 2.65
## 10 Rejected Male C 205 4.53
## 11 Admitted Female C 202 4.46
## 12 Rejected Female C 391 8.64
## 13 Admitted Male D 138 3.05
## 14 Rejected Male D 279 6.16
## 15 Admitted Female D 131 2.89
## 16 Rejected Female D 244 5.39
## 17 Admitted Male E 53 1.17
## 18 Rejected Male E 138 3.05
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## 19 Admitted Female E 94 2.08
## 20 Rejected Female E 299 6.61
## 21 Admitted Male F 22 0.486
## 22 Rejected Male F 351 7.76
## 23 Admitted Female F 24 0.530
## 24 Rejected Female F 317 7.00

mutate() adds a column named percent to the tibble. The values in percent represent the row percentage
of the overall total. For example, among all applicants to the school, males admitted to department A make
up 11.3%.
Sometimes it can be helpful to know each row’s percentage of the grand total, depending on the nature of
the dataset. However, we usually want to calculate percentages based on subgroups, which we’ll do next.

Combining count() and mutate()

Recall that a weighted count() calculates the sum of frequencies across rows, based on whatever variable
you specify. You can combine count() with mutate() to obtain the percentages as well.
Here is an example: Recall that there were 2,691 men and 1,835 women who applied to the school. What
percentages of the total applicants were men vs. women?

ad_tib %>%
count(Gender, wt = Freq) %>%
mutate(percent = n / sum(n) * 100)

## # A tibble: 2 x 3
## Gender n percent
## <fct> <dbl> <dbl>
## 1 Male 2691 59.5
## 2 Female 1835 40.5

The output shows that 59.5% of the applicants were male, while 40.5% of the applicants were female.
Calculating percentages provides a more precise look at the data, but note that the result corresponds to
the 3:2 ratio that we obtained from “eyeballing” the numbers earlier.
One thing to note: When combining these two functions, you will need to use n in your formula for percent.
This is because the count() function returns frequencies (counts) as a column labeled n.
Practice: Combine count() and mutate()

Calculate the percentage of applicants who were admitted and the percentage of applicants who were rejected
(overall).
Solution:

ad_tib %>%
count(Admit, wt = Freq) %>%
mutate(percent = n / sum(n) * 100)

## # A tibble: 2 x 3
## Admit n percent
## <fct> <dbl> <dbl>
## 1 Admitted 1755 38.8
## 2 Rejected 2771 61.2

The output is the overall admission rate: 38.8% of all applicants were admitted.
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Combining group_by() and mutate()

Combining count() and mutate() is useful for sample-wide calculations. But what if we want to determine
the percentages within subgroups? We’ll need to use group_by().

Recall that the grouping variable determines the denominator of calculations. For example, when you group
by Dept, R will calculate each row as a percentage of its department total (rather than as a percentage of
the grand total). Go ahead and try it!

ad_tib %>%
group_by(Dept) %>%
mutate(percent = Freq / sum(Freq) * 100) %>%
print(n = Inf)

## # A tibble: 24 x 5
## # Groups: Dept [6]
## Admit Gender Dept Freq percent
## <fct> <fct> <fct> <dbl> <dbl>
## 1 Admitted Male A 512 54.9
## 2 Rejected Male A 313 33.5
## 3 Admitted Female A 89 9.54
## 4 Rejected Female A 19 2.04
## 5 Admitted Male B 353 60.3
## 6 Rejected Male B 207 35.4
## 7 Admitted Female B 17 2.91
## 8 Rejected Female B 8 1.37
## 9 Admitted Male C 120 13.1
## 10 Rejected Male C 205 22.3
## 11 Admitted Female C 202 22.0
## 12 Rejected Female C 391 42.6
## 13 Admitted Male D 138 17.4
## 14 Rejected Male D 279 35.2
## 15 Admitted Female D 131 16.5
## 16 Rejected Female D 244 30.8
## 17 Admitted Male E 53 9.08
## 18 Rejected Male E 138 23.6
## 19 Admitted Female E 94 16.1
## 20 Rejected Female E 299 51.2
## 21 Admitted Male F 22 3.08
## 22 Rejected Male F 351 49.2
## 23 Admitted Female F 24 3.36
## 24 Rejected Female F 317 44.4

The output shows four percentages per department (male admitted, male rejected, female admitted, and
female rejected) that should sum to approximately 100%. This can be handy when you want to know
the percentage breakdown within each level of another variable. For example, if the four rows of each
department represented four levels of a single variable (e.g., applicants’ country of origin), that would be
useful information.

However, in the current analysis, we are interested in both gender and admission status and want to compare
the admission rate for men to the admission rate for women within each department. Thus, we need to group
by two variables. Which ones? Did you guess Dept and Gender?

Think through the logic of this analysis:
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• To get an an outcome for each department, first group by Dept.
• To compare men and women, group by Gender second.
• Grouping by both variables creates 12 Dept-Gender subgroups (Dept. A-Male, Dept. A-Female, Dept.

B-Male, Dept. B-Female, etc.).
• Finally, call mutate() to calculate the percentage of each row (admitted vs. rejected) within its Dept-

Gender subgroup.

The idea is a little complicated, but the code is pretty straightforward:

ad_tib %>%
group_by(Dept, Gender) %>%
mutate(percent = Freq / sum(Freq) * 100) %>%
print(n = Inf)

## # A tibble: 24 x 5
## # Groups: Dept, Gender [12]
## Admit Gender Dept Freq percent
## <fct> <fct> <fct> <dbl> <dbl>
## 1 Admitted Male A 512 62.1
## 2 Rejected Male A 313 37.9
## 3 Admitted Female A 89 82.4
## 4 Rejected Female A 19 17.6
## 5 Admitted Male B 353 63.0
## 6 Rejected Male B 207 37.0
## 7 Admitted Female B 17 68
## 8 Rejected Female B 8 32
## 9 Admitted Male C 120 36.9
## 10 Rejected Male C 205 63.1
## 11 Admitted Female C 202 34.1
## 12 Rejected Female C 391 65.9
## 13 Admitted Male D 138 33.1
## 14 Rejected Male D 279 66.9
## 15 Admitted Female D 131 34.9
## 16 Rejected Female D 244 65.1
## 17 Admitted Male E 53 27.7
## 18 Rejected Male E 138 72.3
## 19 Admitted Female E 94 23.9
## 20 Rejected Female E 299 76.1
## 21 Admitted Male F 22 5.90
## 22 Rejected Male F 351 94.1
## 23 Admitted Female F 24 7.04
## 24 Rejected Female F 317 93.0

Now we can compare apples to apples! In four of the six departments (A, B, D, and F), women had a higher
admission rate than men, whereas in the other two departments (C and E), men had a higher admission
rate.

R Tip: group_by() and mutate()

• Think carefully about what variable(s) you want to group by. Group by the subgroups you want to
compare.

• Always check the output to make sure the results make sense! If they don’t, the issue may be with the
denominator of the calculation, so check the group_by() variable(s).
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• It may be necessary to group by two (or more) variables!

Practice: Combine Multiple Verbs

Earlier, we saw that admission rates differed between women and men for each department. How does this
outcome compare to the school-wide admission rates for men and women?

To answer this question, we need to combine group_by(), count(), and mutate().

Solution:

ad_tib %>%
group_by(Gender) %>%
count(Admit, wt = Freq) %>%
mutate(percent = n / sum(n) * 100)

## # A tibble: 4 x 4
## # Groups: Gender [2]
## Gender Admit n percent
## <fct> <fct> <dbl> <dbl>
## 1 Male Admitted 1198 44.5
## 2 Male Rejected 1493 55.5
## 3 Female Admitted 557 30.4
## 4 Female Rejected 1278 69.6

The output shows the result for the entire school: 44.5% of men were admitted, while 30.4% of women were
admitted. This seems strange, as the previous analysis showed that within four of the six departments,
women’s admissions rates were higher than men’s.

Did something go wrong with the analysis? Maybe you used the wrong grouping variable? In a situation
like this, it would be reasonable to go back and check your code. However, when you go back and check,
you confirm that you grouped appropriately and called count() on the correct variable (Admit). So what
happened?

A Paradox

The current finding is an illustration of Simpson’s paradox, which is a statistical phenomenon in which the
overall finding (such as the lower admission rate for women at the school level) evaporates or even reverses
when subgroups are examined (such as the higher admission rate for women in four out of six departments).
How does this happen? It is usually due to some third variable – a confound – that is only apparent at the
subgroup level.

In the current scenario, the explanation is that department popularity (i.e., the number of applications to a
department) differs between men and women. Compare the following two outputs:

ad_tib %>%
group_by(Dept) %>%
count(Gender, wt = Freq) %>%
mutate(percent = n / sum(n) * 100)

## # A tibble: 12 x 4
## # Groups: Dept [6]
## Dept Gender n percent
## <fct> <fct> <dbl> <dbl>
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## 1 A Male 825 88.4
## 2 A Female 108 11.6
## 3 B Male 560 95.7
## 4 B Female 25 4.27
## 5 C Male 325 35.4
## 6 C Female 593 64.6
## 7 D Male 417 52.7
## 8 D Female 375 47.3
## 9 E Male 191 32.7
## 10 E Female 393 67.3
## 11 F Male 373 52.2
## 12 F Female 341 47.8

This output shows department-level application patterns of men and women. Two departments, C and E,
had more female than male applicants. Two additional departments, D and F, also had large numbers of
female applicants (even if not the majority).

ad_tib %>%
group_by(Dept) %>%
count(Admit, wt = Freq) %>%
mutate(percent = n / sum(n) * 100)

## # A tibble: 12 x 4
## # Groups: Dept [6]
## Dept Admit n percent
## <fct> <fct> <dbl> <dbl>
## 1 A Admitted 601 64.4
## 2 A Rejected 332 35.6
## 3 B Admitted 370 63.2
## 4 B Rejected 215 36.8
## 5 C Admitted 322 35.1
## 6 C Rejected 596 64.9
## 7 D Admitted 269 34.0
## 8 D Rejected 523 66.0
## 9 E Admitted 147 25.2
## 10 E Rejected 437 74.8
## 11 F Admitted 46 6.44
## 12 F Rejected 668 93.6

This output shows department-level admission patterns. The four departments with the highest rejection
rates (C, D, E, and F) are the same departments that were popular among women (i.e., high percentages of
female applicants).

What is the implication? At this school, women tend to apply to departments that have higher rejection rates,
which leads to an overall (school-wide) lower admission rate for women. If you only looked at school-wide
admission rates, then the picture would be incomplete.

Fortunately, dplyr verbs made it easy for you to look at various subgroups and to drill down in your analysis!
As you complete your investigation, you recommend to your boss that the school examine its recruitment
strategies to determine how to increase the appeal of departments that have lower numbers of male or female
applicants.
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Summarizing with summarize()

The final verb function to know is summarize(), which creates a new variable (usually calculated from
existing variables) and drops the other variables from the output. It is very useful when combined with
group_by(). This function is similar to mutate(); the main difference is that mutate() can add a column
to a tibble (and keep existing columns), whereas summarize() creates a smaller tibble consisting exclusively
of the grouping variable(s) and the newly calculated column(s).

For example, if we want to know the average number of male and female applicants across departments,
along with the standard deviation:

ad_tib %>%
group_by(Gender) %>%
summarize(mean = mean(Freq), st_dev = sd(Freq))

## # A tibble: 2 x 3
## Gender mean st_dev
## <fct> <dbl> <dbl>
## 1 Male 224. 142.
## 2 Female 153. 134.

The output shows that the mean number of male applicants (across departments) is larger than the mean
number of female applicants (across departments). However, there is quite a bit of interdepartmental vari-
ability, as shown by the large standard deviations.

We can also summarize by two variables. For example, you might want the mean number of male and female
applicants who were admitted or rejected:

ad_tib %>%
group_by(Gender, Admit) %>%
summarize(mean = mean(Freq), st_dev = sd(Freq))

## ‘summarise()‘ has grouped output by ’Gender’. You can override using the
## ‘.groups‘ argument.

## # A tibble: 4 x 4
## # Groups: Gender [2]
## Gender Admit mean st_dev
## <fct> <fct> <dbl> <dbl>
## 1 Male Admitted 200. 192.
## 2 Male Rejected 249. 79.3
## 3 Female Admitted 92.8 69.1
## 4 Female Rejected 213 162.

This output shows another way to look at the data and make comparisons. Before we calculated the
percentage of men and women who were admitted vs. rejected with mutate(). In the current code, we
calculate the mean and standard deviation for the frequencies of these groups. Which approach you take
depends on your question and on the type of data you have!

Recap: dplyr Verbs

Here is a recap of the functions you have learned in this lesson so far:
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• arrange(): sorts the data in ascending order, based on a selected variable. You can add desc() to
obtain descending order instead.

• select(): selects the variables to display in the tibble and allows you to specify their placement.
• count(): counts the rows associated with a variable. You can add the argument wt = to weight each

row by some other variable, such as frequency.
• filter(): selects specific observations based on the criteria for variables of interest.
• group_by(): groups rows based on a variable so that the subsequent calculations are performed by

group rather than for the entire sample.
• mutate(): creates a new variable, based on a formula and/or existing variable(s). Examples include

percentage and mean.

Recommended Pipelines for Frequency Data

There are two key pipelines that you have seen in these exercises.

The first pipeline focuses on the entire sample:

• Create the initial tibble with the desired variables and observations in the desired order.

– tibble_name %>% select() %>% filter() %>% arrange() %>%

• Call a weighted count to obtain the sum of frequencies for each level of each variable of interest.

– count(variable, wt = ) %>%

• Mutate the tibble to calculate percentages associated with these sums (once per variable of interest).

– mutate(percent = n / sum(n) * 100)

The results will be each subgroup’s percentage of the overall total for each variable.

The second pipeline focuses on subgroups:

• Use the same initial cleaning process.

– tibble_name %>% select() %>% filter() %>% arrange() %>%

• Group by the variable(s) of interest.

– group_by(variable) %>%

• Call a weighted count to obtain the sum of frequencies.

– count(variable, wt = ) %>%
– Note that this might not be needed if you have grouped by multiple variables.

• Mutate to calculate subgroup percentages.

– mutate(percent = n / sum(n) * 100)
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