Writing an Effective Data Management Plan

Lisa Spiro, Melissa Wentz & Erik Engquist
Rice University
March 11, 2016
Outline

1. Discuss challenges in developing data management plans (DMPs)
2. Review examples of agency guidelines
3. Highlight best practices for data management
4. Evaluate a sample plan
5. Experiment with DMP Tool
6. Explore resources for writing DMPs
1. What challenges do you face in dealing with data?
2. Examples of agency guidelines
Nearly All **Federal Funding Agencies** (& Some Nonprofits) **Require** or Will Soon Require DMPs

- NSF (specific guidelines by directorate)
- NIH
- CDC
- NEH Office of Digital Humanities
- DOE
- DOT

- FDA
- NOAA
- USAID
- USGS
- Moore Foundation
- Alfred P. Sloan Foundation
- ...

...
Why do funding agencies require DMPs?

- Facilitate replication of results
- Allow alternative hypotheses to be tested
- Enable comparative studies
- Promote new research
- Foster education
- Maximize investment of research money
Some Principles Underlying Data Management/Sharing Requirement

- **Data**: “the recorded factual material commonly accepted in the scientific community as necessary to validate research findings”
- Values openness for fostering scientific progress & integrity.
- Respects norms of disciplinary communities.
- Recognizes constraints such as confidentiality & intellectual property.
- Promotes “timely access” while respecting rights of researchers to analyze data & publish results.
Rice University’s Research Data Management Policy

- PI is the primary steward of data & is responsible for:
 - Educating research team on “obligations regarding research data”
 - Ensuring accuracy, security & management of data
 - Complying with sponsor requirements

- Researcher has right to choose research directions, publish work & share findings.

- Rice holds legal title to data.

- Normal retention period for data = 5 years after grant expiration.
Information to Include in NSF DMPs

Guidelines vary by directorate, but generally require:

- Types of data
- Standards to be used for data & metadata
- Policies for access and sharing (including IP)
- Policies and provisions for re-use & re-distribution
- Plans for archiving data and for preserving access
Read the Guidelines.

- Pay attention to the specific requirements of your funding agency.
- Typically DMPs are 2 pages long.
DMPs and Compliance

- Proposals without DMPs will not be reviewed.
- Some agencies/directorates (e.g. NSF Bio) require reporting on DMP implementation in annual & final reports.
- Some directorates will consider DMP implementation in evaluating future proposals.
- Pay attention to policies governing how data should be handled, e.g. HIPAA.
1. Understand your data.

- What kind of data will you produce/use?
 - What computing resources are needed?
 - What will be the workflow for managing data?
 - How much data will you be generating?
- What costs will be associated with managing data?
 These can often be written into grants.
- Are there restrictions on the data (e.g. HIPAA)?
2. Draw upon data management norms for your discipline.

- Ecology: [British Ecological Society](https://www.britishecologicalsociety.org) and [ESA](http://www.esa.org)
- Environmental science: [DataONE](https://www.dataone.org)
- Social science: [ICPSR](https://www.icpsr.umich.edu), [Dataverse](https://dataverse.org) & [The American Economic Review: Data Availability Policy](https://www.aeaweb.org/journals/data-availability-policy)

>> Know up front what is required to share data through your discipline’s repository (e.g. [ICPSR](https://www.icpsr.umich.edu)).
3. Describe your data.

- **Document your data**, recording information like title, creator, dates, subject, context & methods.
- Use established **metadata standards** so data are discoverable & interpretable.
 - e.g. [Ecological Metadata Language](https://www.earthdata.nasa.gov/earthdata-search/explorer/ecological-metadata-language) or [Data Documentation Initiative](https://ddialliance.org/) [DDI]
Example of Metadata for Data: Dryad

Based on Dublin Core standard

4. Use effective storage strategies.

- Keep 3 copies of data in multiple locations: “original, near and far” (e.g. hard drive, external drive, server)
- Manage versions of files (e.g. using Subversion or GitHub)
- Determine who needs access to files & ensure they are trained in properly handling them.
- Provide appropriate security for data (e.g. anti-virus protection, access control, encryption, de-identification of data).
- Store data in non-proprietary formats (e.g. .txt not .doc)
Storage Options at Rice

Crate: “research storage solution for Rice researchers; 500GB per research award”

Archive: “research solution for long-term retention of completed work”

Box: “enterprise cloud-based storage & collaboration service”

Rice Storage, File Sharing, and Backup Solutions

<table>
<thead>
<tr>
<th></th>
<th>Faculty</th>
<th>Staff</th>
<th>Grad Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual and Collaborative Storage Solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual User U: Drive (FAQ)</td>
<td>5GB</td>
<td>5GB</td>
<td>5GB</td>
</tr>
<tr>
<td>Google Drive (FAQ) (Login) - NOT recommended for sensitive data</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>Rice Box (FAQ) (Login)</td>
<td>unlimited</td>
<td>unlimited</td>
<td>unlimited</td>
</tr>
<tr>
<td>Department Share (FAQ)</td>
<td>40GB shared</td>
<td>40GB shared</td>
<td>40GB shared**</td>
</tr>
<tr>
<td>Research Storage Solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crate (FAQ)</td>
<td>500GB***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Archive (FAQ)</td>
<td>varies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lease-based Storage & Scratch Solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNAS (FAQ)</td>
<td>varies ‡</td>
<td>varies ‡</td>
<td>*</td>
</tr>
<tr>
<td>File Delivery, Version, & Backup Solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crashplan for Backup for Rice-owned PCs and Macs (FAQ) (Login)</td>
<td>§ unlimited</td>
<td>§ unlimited</td>
<td></td>
</tr>
<tr>
<td>Subversion/SVN (FAQ) (Login)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. Share data through an appropriate data archive.

Agencies permit different approaches to data sharing. Perhaps the best is to use a national data archive.

Why share?

- **Increase citations**
- **Meet reproducibility & data sharing standards**
- **Facilitate future research**

http://www.re3data.org/
Share Small to Medium Datasets through the Rice Digital Scholarship Archive

https://scholarship.rice.edu/handle/1911/77660
4. Evaluate a sample plan
How to Evaluate a DMP

Reviewer’s Worksheet for NSF Data Management Plans

The table & checklists cover NSF’s requested components of the proposal’s data management plan. An asterisk (*) indicates details found in more thorough plans, and a quick measure of quality when checked. See pg. 2 for more examples and guidelines.

<table>
<thead>
<tr>
<th>Research product</th>
<th>Source</th>
<th>Format</th>
<th>Size</th>
<th>Preserved (how?)</th>
<th>Shared (how?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.g., Tables, images, computer code, curriculum items, physical samples</td>
<td>Data repository, Instrument, interviews, PI’s prior project</td>
<td>JPG, MATLAB, Excel table, device’s format</td>
<td>>1TB, 20K files</td>
<td>Discarded, PI retains, data archive</td>
<td>By request, website, repository</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data Sharing

- Is data publicly accessible?
- When will data be shared?
- Who administers?
- Describes audience to benefit.

Preparation of data for sharing:

- Uses their research field’s metadata standards
- AND/OR creates description sufficient for re-use

Data management during project:

- Storage: has a backup plan
- Location & media used:
 - 2+ copies with 1 off-site
 - Specifies who is responsible
 - Data security / access controls
 - Has conventions for naming & organizing files

Center for Digital Research & Scholarship, Columbia University Libraries, “**Reviewer’s Worksheet for NSF Data Management Plans**”
Exercise: Let’s evaluate a sample plan

Use the “Reviewers’ Worksheet” to evaluate either “Rio Grande Basin” or the workshop on Afro-Caribbean Labor (NEH) [10 minutes]

Consider:

- What are this plan’s strengths? Weaknesses?
- What is your overall evaluation?
5. Experiment with DMP Tool
Creating DMPs Using DMPTool

https://dmptool.org
Exercise: Sketch out a DMP

- Log into https://dmptool.org
- Select the NSF-Earth Sciences template.
- Create a draft DMP for “Rio Grande...” Try to improve upon the plan that you’ve been provided.
- Alternatively, you can create a DMP for your own (real or imagined) project using the appropriate template.
6. Data Management Resources at Rice & Beyond
Help Provided by the Rice Research Data Management Team

- Assistance developing data management plans.
- Consultation on organizing and managing data.
- Assistance identifying appropriate data repositories.

>> W: http://researchdata.rice.edu/

>> E: researchdata@rice.edu
Help Provided by the Office of Proposal Development

- Assist in developing your proposal, including the DMP
- Identify components that should be included in the DMP
- Draft the non-technical parts of the DMP
- Review, edit, and format the final version of the DMP
- Connect you with other data management resources on campus and online

>> Office of Proposal Development
DMP Components*

NSF - program solicitation or NSF GPG

NIH - FOA or Application Guide

DOE - FOA or Statement of Digital Data Management

*good idea to reference elements of research plan

Another Resource: Office of Research Compliance
Help Provided by Rice’s Center for Research Computing

- “Operating best-in class on-premise shared compute, visualization and data-storage facilities;
- Facilitating access to on-premise, regional, national and commercial cloud facilities;
- Delivering user services and training for best use of shared facilities;
- Offering application and proposal consulting support services.”
Helpful Resources

- Data Carpentry and Software Carpentry
- Data One, Primer on Data Management
- NISO Primer, Research Data Management
- U of Oregon Libraries, Research Data Management Best Practices
- UK Data Service Costing Tool
- UNC Research Data Toolkit: Example Language
- USGS Data Management
More Helpful Resources

- DataOne Primer on Data Management
- Dataverse, Data Management Plans
- ICPSR Guide to Social Science Data Preparation and Archiving
- Oak Ridge National Lab Distributed Active Archive Center, Best Practices for Preparing Environmental Data Sets to Share and Archive
- Svend Juul et al, “Take good care of your data”
- UK Data Archive, Managing and Sharing Data: Best Practices for Researchers